

Solution of missing GT strength problem and spin-dipole resonance

\% Neutron measurement
\% Proportionality between (p, n) 0° cross section and $\mathrm{B}(\mathrm{GT})$
\% Theoretical solutions for missing GT strength problem

* Multipole decomposition analysis
$\%$ Experimental solution for missing GT strength problem
\% Sum rules for higher-multipole excitations
* Spin-dipole resonance
\% Homework

Neutron measurements

(p,n) reactions

Two different techniques for analyzing intermediate-energy neutron momentum:
Charge-exchange method:

- Transfer the neutron momentum to a proton via a secondary (n, p) reaction.
- Measure the recoiled proton momentum in a conventional spectrometer.

Time-Of-Flight (TOF) method:

- Measure the neutron TOF by detecting its arrival time at a hodoscope.
- Flight path length L is fixed and typically $L \geqq 100 \mathrm{~m}$.

flight pass length $L \geqq 100 m$

Neutron charge-exchange facilities

Neutrons are converted to protons by ${ }^{1} \mathrm{H}(\mathrm{n}, \mathrm{p})$ and protons are analyzed/measured.

Advantage:

- Enable (p,n) studies where long TOF paths are not feasible.

Disadvantage:

- Final energy resolutions are limited to about 1 MeV .
- Difficult to measure polarization transfers.

Neutron TOF facilities

Neutron energies are determined by measuring their time-of-flight (TOF).

D.A.Lind, Can. J. Phys. 65, 637 (1987).

LAMPF/NTOF
 $$
T_{n} \leqq 800 \mathrm{MeV}, L_{T O F} \leqq 620 \mathrm{~m}, \theta \leqq 27^{\circ}
$$

X, Y.Chen et al., Phys. Rev. C 47, 2159 (1993).

TOF spectra and Neutron detection efficiency

Typical TOF energy spectra for ${ }^{14} \mathrm{C}(\mathrm{p}, \mathrm{n})^{14} \mathrm{~N}$ at $80-650 \mathrm{MeV}$ and 0 degrees

Good energy resolutions

- 200 keV at $\mathrm{T}_{\mathrm{n}} \leqq 200 \mathrm{MeV}$
- 650 keV at $\mathrm{T}_{\mathrm{n}}=650 \mathrm{MeV}$

Note: Other typical (p,n) spectra for light, medium, and heavy nuclei are given in Appendix A.

Detection of fast neutrons with good energy resolutions:

- Accomplished with relatively small detector volume (for good timing resolution in TOF).
- Detection efficiency $\varepsilon<100 \%$

Efficiency ε should be determined to derive cross sections:

Exercise/Homework:

Explain how the neutron detector's efficiency is determined by referring Appendix B .

Proportionality between (p, n) cross section and $B(G T)$

Empirical proportionality between $(\mathrm{p}, \mathrm{n}) \sigma\left(0^{\circ}\right)$ and $\mathrm{B}(\mathrm{GT})$

For low-lying GT states, following two values were measured.

- Beta decay transition strengths: B(GT)
- Cross sections by (p, n) at $0^{\circ}(q \sim 0)$

Empirical proportionality has been found/established.

$$
\sigma\left(0^{\circ}\right)=\hat{\sigma}_{\mathrm{GT}}(A) F(q, \omega) B(\mathrm{GT}) \simeq \hat{\sigma}_{\mathrm{GT}}(A) B(\mathrm{GT})
$$

Ref.

Lecture by Ichimura-san "PWBA"

- $\hat{\sigma}_{\mathrm{GT}}(\boldsymbol{A})$: GT unit cross section (proportionality coefficient) A-dependent (and T_{p}-dependent)
- $\boldsymbol{F}(\boldsymbol{q}, \boldsymbol{\omega})$: (q, ω) correction factor $(\mathrm{F}(0,0)=1)$
T.N.Taddeucci et al.,

Nucl. Phys. A 469, 125 (1987).

Proportionality between $(\mathrm{p}, \mathrm{n}) \sigma\left(0^{\circ}\right)$ and $\mathrm{B}(\mathrm{GT})$

Experimental results for the GT transitions in p-shell nuclei

Proportionality between $(p, n) \sigma\left(0^{\circ}\right)$ and $B(G T)$ has been established.

T.N.Taddeucci et al., Nucl. Phys. A 469, 125 (1987).

Missing GT strength problem

Experimental verification of GT sum rule

Experimental (p, n) cross section up to GTR is converted to $\mathrm{B}(\mathrm{GT})$

- $\sigma^{(p, n)}\left(0^{\circ}\right) \simeq \hat{\sigma}_{\mathrm{GT}}(A) \cdot B(\mathrm{GT})$
- Beyond GTR, Lミ1 excitations would be dominant \rightarrow excluded.

Fraction of GT sum-rule strength
Experimental S(GT-) = 50-60\% of 3(N-Z)

- $3(\mathrm{~N}-\mathrm{Z})$ is the minimum value in the case of $S\left(G T_{+}\right)=0$.

\rightarrow missing GT strength problem

C. Gaarde, Nucl. Phys. A 369, 258 (1981).

Theoretical solutions for the "missing GT strength" problem

Two possible mechanisms for GT quenching effect

Quark-degree (Δ-isobar) effect

A nucleon is assumed as a bag of three quarks.
GT $\Delta \mathrm{S}=\Delta \mathrm{T}=1$ transition can excite nucleon (N) to Δ-isobar (Δ).

If the coupling between $\mathrm{p}-\mathrm{h}$ and Δ-h is strong

- p-h excitations of GTR in $\omega \sim 10 \mathrm{MeV}$ mixed with Δ-h excitations at $\omega \sim 300 \mathrm{MeV}$

Coupling is repulsive.

- GTR strength is moved to Δ-h excitation region \rightarrow GTR strength is quenched.

\% no Pauli blocking for Δ excitation $\%$ large number of Δ-h configurations \downarrow
able to bridge $\Delta \omega=300 \mathrm{MeV}$

Two possible mechanisms for GT quenching effect

Configuration mixing effect

$1 \mathrm{p}-1 \mathrm{~h}$ excitations mix with $2 \mathrm{p}-2 \mathrm{~h}$ excitations

- GTR strength is moved to the continuum beyond GTR.

Theoretical prediction for $\mathrm{B}(\mathrm{GT})$ of ${ }^{90} \mathrm{Zr}(\mathrm{p}, \mathrm{n})$
GTR < 10 MeV (NOT shown)

- $\sim 50 \%$ of sum-rule

Coupling to $2 \mathrm{p}-2 \mathrm{~h}$ configurations

- $\sim 50 \%$ of sum-rule

GTR is quenched by $\sim 50 \%$ due to configuration mixing

G.F.Bertsch and I.Hamamoto, Phys. Rev. C 26, 1323 (1982).

The "extended" Landau-Migdal interaction

The "original" Landau-Migdal interaction V_{Lm} is:

$$
V_{\mathrm{LM}}=C_{0}\left[f_{0}+f_{0}^{\prime}\left(\tau_{1} \cdot \tau_{2}\right)+g_{0}\left(\sigma_{1} \cdot \sigma_{2}\right)+g_{0}^{\prime}\left(\sigma_{1} \cdot \sigma_{2}\right)\left(\tau_{1} \cdot \tau_{2}\right)\right]
$$

- VLM is a zero-range interaction

For GT ($\Delta \mathrm{S}=\Delta \mathrm{T}=1$) excitation, the following spin-isospin term contributes:

$$
\operatorname{spin} \text {-isospin }(\Delta \mathrm{S}=\Delta \mathrm{T}=1): V_{\mathrm{LM}}^{\sigma \tau}=C_{0} g^{\prime}\left(\tau_{1} \cdot \tau_{2}\right)\left(\sigma_{1} \cdot \sigma_{2}\right) \quad \text { we set } g_{0}^{\prime} \equiv g^{\prime}
$$

- pionic unit : $C_{0}=\frac{f_{\pi N N}^{2}}{m_{\pi}^{2}} \simeq 400 \mathrm{MeV} \mathrm{fm}^{3}$

The Landau-Migdal interaction can be extended to include Δ as:

$$
\left.\begin{array}{rl}
V_{\mathbf{L M}}= & \underbrace{\left[\begin{array}{c}
f_{\pi N N}^{2} \\
m_{\pi}^{2} \\
\text { coupling b/w } \\
p-h \text { and } \Delta-h \text { states }
\end{array}\right.}_{\begin{array}{c}
\text { coupling b/w } \\
\text { p-h states }
\end{array}}+\underbrace{f_{\pi N N} f_{\pi N \Delta}^{2}}_{\begin{array}{l}
f_{\pi N N}: \pi N N \text { coupling const. } \\
f_{\pi N \Delta}: \pi N \Delta \text { coupling const. }
\end{array}} g_{N \Delta}^{\prime}
\end{array}\right]\left(\tau_{1} \cdot \tau_{2}\right)\left(\sigma_{1} \cdot \sigma_{2}\right)
$$

Two Landau-Migdal parameters, $\boldsymbol{g}_{N N}^{\prime}$ and $\boldsymbol{g}_{N \Delta}^{\prime}$

Two possible mechanisms and LM parameters

Landau-Migdal interaction with N and $\Delta: V_{\mathbf{L M}}=\frac{f_{\pi N N}^{2}}{m_{\pi}^{2}} g_{N N}^{\prime}+\frac{f_{\pi N N} f_{\pi N \Delta}}{m_{\pi}^{2}} g_{N \Delta}^{\prime}$
Quark-degree (Δ-isobar) effect
Assumption: $g_{N \Delta}^{\prime}=g_{N N}^{\prime} \quad$ (universality ansatz)
Coupling between $\mathrm{p}-\mathrm{h}$ and Δ-h is large (strong repulsion)

- Significant GT strengths move to Δ region $(\omega \sim 300 \mathrm{MeV})$
- GTR strength is quenched

Strength

Configuration mixing effect

 In microscopic calculations, $g_{N \Delta}^{\prime}<g_{N N}^{\prime}\left[g_{N \Delta}^{\prime} \simeq(0.6-0.7) g_{N N}^{\prime}\right]$- One-boson ex. model by Arima et al., and Towner et al.
- G-matrix calc. by Dickhoff et al. and Nakayama et al.

Coupling between p-h and Δ-h is small (weak repulsion)

- Strength-shift to Δ region is small
- GTR strength is quenched by configuration mixing

Strength

g'NN and g'N dependences on GTR

Landau-Migdal interaction at $\mathbf{q}=0$

$$
V_{\mathrm{LM}}=\frac{f_{\pi N N}^{2}}{m_{\pi}^{2}} \frac{g_{N N}^{\prime}}{\uparrow}+\frac{f_{\pi N N} f_{\pi N \Delta}}{m_{\pi}^{2}} \frac{g_{N \Delta}^{\prime}}{\uparrow}
$$

repulsion between
particle and hole (ph)
coupling between ph and $\Delta \mathrm{h}$

LM parameter g'nn

Determine the p-h repulsion
Larger g'nn \rightarrow Stronger repulsion

- Peak shifts to higher ω
- Collectivity becomes large

LM parameter g'na

Determine the coupling to Δ
Larger g'N \rightarrow Stronger coupling

- Strength becomes small (quenched) [Strength moves to Δ region]

Multipole decomposition analysis

How to extract the GT strength in the continuum

There would be GT $\Delta \mathrm{L}=0$ strength:

- below the GTR
- beyond the GTR

Extraction of these GT strength in the continuum:

Assumption:

- The measured cross section at an energy transfer ω is a coherent sum of cross sections from several ΔL

$$
\sigma(\omega)=\sum_{\Delta L} a_{\Delta L} \sigma_{\Delta L}(\omega)=a_{\Delta L=0} \sigma_{\Delta L=0}(\omega)+a_{\Delta L=1} \sigma_{\Delta L=1}(\omega)+\cdots
$$

- $a_{\Delta L}$: relative strengths of the individual multipoles

Note:

- In practice, $\sigma(\omega)$ is expressed as an incoherent sum of c.s. from several $\Delta \mathrm{J}^{\pi}$ as

$$
\sigma(\omega)=\sum_{\Delta J^{\pi}} a_{\Delta J_{\pi}} \sigma_{\Delta J^{\pi}}(\omega)
$$

- In general, the possible three $\Delta \mathrm{J}=\Delta \mathrm{L} \pm 1, \Delta \mathrm{~L}$ members for a $\Delta \mathrm{L}$ are grouped because of the small $\Delta \mathrm{J}$ dependence.
Here, we express $\sigma(\omega)$ as a incoherent sum of cross sections from several ΔL for simplicity.

How to extract the GT strength in the continuum

Assumption:

$$
\sigma(\omega)=\sum_{\Delta L} a_{\Delta L} \sigma_{\Delta L}(\omega)=a_{\Delta L=0} \sigma_{\Delta L=0}(\omega)+a_{\Delta L=1} \sigma_{\Delta L=1}(\omega)+\cdots
$$

Because $a_{\Delta L}$ should be independent of angle θ, angle dependence can be expressed as

If angular distributions (θ-dependences) of $\sigma_{\Delta L=0}$ and $\sigma_{\Delta L=1}$ are significantly different, relative strengths $a_{\Delta L}$ can be determined by a x^{2} fitting.

ΔL dependence on cross section

The (p, n) reaction mainly occurs around the nuclear surface (\because strong absorption)
The angular momentum transfer, ΔL, is related to momentum transfer, q , and nuclear radius, R, as

$$
\Delta L \simeq q \cdot R \cdots(1)
$$

The momentum transfer q is expressed with the incident momentum $p_{\text {in }}$ and scattering angle θ as:

$$
q \simeq 2 p_{\mathrm{in}} \sin \frac{\theta}{2} \ldots(2)
$$

From (1) and (2), we get

$$
\Delta L \simeq 2 p_{\mathrm{in}} R \sin \frac{\theta}{2}
$$

Thus, the cross section takes a maximum at θ depending on $\Delta \mathrm{L}$.
Expectations for ${ }^{208} \mathrm{~Pb}(\mathrm{p}, \mathrm{n})$ at 200 MeV

- $p_{\text {in }}=640 \mathrm{MeV} / \mathrm{c}$
- $R \fallingdotseq 1.1 \mathrm{~A}^{1 / 3} \times 80 \% \fallingdotseq 5 \mathrm{fm}$

Angular distributions would be strongly depend on ΔL

${ }^{208} \mathrm{~Pb}(p, n)$	θ
$\Delta L=0$	0°
$\Delta L=1$	4°
$\Delta L=2$	8°

Angular distributions in DWIA

Comparison between experimental angular distributions and DWIA calculations.

Angular distributions are characterized by angular momentum transfer $\Delta \mathrm{L}$.

- Peak positions shift to larger angles w/ increasing $\Delta \mathrm{L}$ as expected.

Experimental angular distributions are well reproduced by DWIA calculations.

C. Gaarde et al., Nucl. Phys. A 369, 257 (1981).

K. Yako et al., Phys. Rev. Lett. 103, 012503 (2009),

Multipole decomposition analysis

For each energy transfer ω, it is assumed that:
The measured c.s. $=$ An incoherent sum of c.s. arising from different $\Delta \mathrm{J} \pi$

$$
\sigma^{\exp }(\theta, \omega)=\sum_{\Delta J^{\pi}} a_{\Delta J^{\pi}} \sigma_{\Delta J^{\pi}}^{\mathrm{calc}}(\theta, \omega)
$$

```
Data:
90Zr(p,n) and }\mp@subsup{}{}{90}\textrm{Zr}(\textrm{n},\textrm{p}
at 300 MeV
```

- $a_{\Delta J^{\pi}}$: relative strengths of the individual multipoles
- $\sigma_{\Delta J^{\pi}}^{\text {calc }}$: angular distributions obtained by DWIA calculations

Angular distributions, $\sigma_{\Delta J^{\pi}}^{\text {calc }}$, are prepared for several p-h combinations:
For each $\sigma_{\Delta J^{\pi}}^{\text {calc }}$, the strength $a_{\Delta J^{\pi}}$ is determined to minimize the χ^{2}-value defined by

$$
\chi^{2}(\omega)=\sum_{\theta}\left[\frac{\sigma^{\exp }(\theta, \omega)-\sum_{\Delta J^{\pi}} a_{\Delta J^{\pi}} \sigma_{\Delta J \pi}^{\text {calc }}(\theta, \omega)}{\delta \sigma^{\exp }(\theta, \omega)}\right]^{2}
$$

- The $p-h$ combination giving the minimum X^{2} is chosen.
- ΔL is limited up to $3\left(\Delta J^{\top}=4^{-}\right)$due to:
- $\Delta L_{\text {max }}<\Delta k \cdot R_{\mathrm{Zr}}=4$
- limited data points (7 for (p,n))

Results of MDA

For a given $\Delta \mathrm{L}, \Delta \mathrm{J}$ dependence on DWIA cross sections is small:

- $\Delta \mathrm{J}$ transitions $\left(0^{-}, 1^{-}, 2^{-}\right)$are grouped to the lowest dominant $\Delta \mathrm{L}(1)$.

MDA results are in good agreement with the measured cross sections.
ΔJ^{π} could not be separated in this MDA.

- For ${ }^{90}(\mathrm{p}, \mathrm{n})$, a fairly large contribution of $\Delta \mathrm{L}=0$ up to $\omega \sim 50 \mathrm{MeV}$.
- For ${ }^{90} \mathrm{Zr}(\mathrm{p}, \mathrm{n})$, a relatively small $\Delta \mathrm{L}=0$ component up to $\omega \sim 30 \mathrm{MeV}$.

GT unit cross sections

Systematic study for $0^{\circ}(\mathrm{p}, \mathrm{n})$ cross sections at 297 MeV

- $58 \leqq \mathrm{~A} \leqq 120\left({ }^{58} \mathrm{Ni} \sim{ }^{120} \mathrm{Sn}\right)$
- B(GT)'s are known from beta decay ft values
- GT unit cross sections are obtained as a function of A

$$
\hat{\sigma}_{\mathrm{GT}} \text { for }{ }^{90} \mathrm{Zr} \rightarrow \hat{\sigma}_{\mathrm{GT}}=3.36 \pm 0.17 \mathrm{mb} / \mathrm{sr}
$$

M. Sasano et al., Phys. Rev. C 79, 024602 (2009).

GT strength distributions

$$
\frac{d^{2} \sigma_{\Delta L=0}(\theta, \omega)}{d \Omega d \omega}=\hat{\sigma}_{\mathrm{GT}} F(\theta, \omega) B(\mathrm{GT} ; \omega)
$$

Experimental B(GT) distributions

(p, n) : fairly large $B(G T)\left(0.45 \mathrm{MeV}^{-1}\right)$ at $\omega=20-60 \mathrm{MeV}$ (n, p) : significant $B(G T)$ at $\omega=20-60 \mathrm{MeV}$

Comparison with calc. including 2p2h effects Dressed-particle RPA by Rijsdijk et al.

- Predict significant B(GT) for (p,n)
- supported by the MDA result
- Reproduce both low-lying GT and GTR for (p,n)
- strength at $\sim 30 \mathrm{MeV}$ for (n, p)

But underestimate at $\omega \sim 40 \mathrm{MeV}$ for both modes

IVSM contribution

乏B(GT) includes IV spin-monopole (IVSM) strength.

- IVSM : $\Delta \mathrm{J}^{\pi}=1^{+}$transition with $\hat{O}(\mathbf{I V S M})=r^{2} \sigma t_{ \pm}\left(\mathrm{c} . \mathrm{fGT}: \hat{O}(\mathbf{G T})=\sigma t_{ \pm}\right)$
- $\Delta \mathrm{L}=0$: indistinguishable from GT in a MDA

Estimation of IVSM

IVSM contribution is estimated in DWIA.

- The transition matrix was calculated by using the operator:

$$
\hat{O}(\mathrm{IVSM})=r^{2} \sigma t_{ \pm}
$$

IVSGMR

- In terms of p -h excitations from $\mid 0>$ to $\mid \mathrm{JM}>$, the normal-mode wave function is:

$$
\begin{aligned}
|J M\rangle & =\sum_{p h} \chi_{J M}^{p h}|p h ; J M\rangle \\
& =\sum_{p h} \chi_{J M}^{p h}\left[a_{p}^{\dagger} a_{h}\right]_{J M}|0\rangle
\end{aligned}
$$

where

$$
\chi_{J M}^{p h}=\frac{\langle p h ; J M| \hat{O}_{L J}^{\dagger}|0\rangle}{\sqrt{\left.\sum_{p h}\left|\langle p h ; J M| \hat{O}_{L J}^{\dagger}\right| 0\right\rangle\left.\right|^{2}}}
$$

For IVSM:

$$
\begin{aligned}
& \hat{O}_{L J}=\hat{O}(\mathrm{IVSM}) \\
& L=0, J=1
\end{aligned}
$$

This method exhausts the (non-energy-weighted) sum rule (maximum IVSM contribution).

IVSM contribution

The calculated IVSM cross section in DWIA is

$(p, n) t$ - mode : 4.2 ± 0.9 in the GT unit
$(n, p) t_{+}$mode : 2.5 ± 0.3 in the GT unit

- The sum-rule value has been assumed (maximum contribution of IVSM).

By subtracting the IVSM contribution, quenching factor becomes:

$$
Q \equiv \frac{S_{\mathrm{GT}}^{-}-S_{\mathrm{GT}}^{+}}{3(N-Z)}=0.86 \pm 0.07
$$

$\rightarrow 86 \pm 7 \%$ of the sum rule value of $3(\mathrm{~N}-\mathrm{Z})=30$ has been found up to $\omega=56 \mathrm{MeV}$

- Configuration mixing : dominant
- Δ-hole $\quad:$ minor ($\sim 10 \%$) effect (but might be not negligible)

Landau-Migdal parameters, g'NN and g'N

Landau-Migdal interaction at $\mathbf{q}=0$

$$
\begin{gathered}
V_{\mathbf{L M}}=\frac{f_{\pi N N}^{2}}{\boldsymbol{m}_{\boldsymbol{\pi}}^{2}} \frac{\boldsymbol{g}_{\boldsymbol{N} \boldsymbol{N}}^{\prime}}{\uparrow}+\frac{f_{\pi N N} f_{\pi N \Delta}}{\boldsymbol{m}_{\boldsymbol{\pi}}^{2}} \frac{\boldsymbol{g}_{\boldsymbol{N} \boldsymbol{L}}^{\prime}}{\uparrow} \\
\begin{array}{c}
\text { repulsion between } \\
\text { courticle and hole (ph) } \\
\text { ph and between } \Delta h
\end{array}
\end{gathered}
$$

LM parameter g'nn

Determine the p-h repulsion
Sensitive to GTR peak position

- g'nn $=0.6 \pm 0.1$

LM parameter g'ns

Determine the coupling to Δ
Sensitive to the GT quenching factor Q

- $g^{\prime} N \Delta=0.35 \pm 0.16$
$g^{\prime}{ }^{\prime} N>g^{\prime}{ }_{N \Delta}$
\because The universality, g' $N N=g^{\prime} N \Delta$, does not hold.
\because Configuration mixing effect is dominant.

Spin-isospin excitations/GRs with higher multipoles

Higher multipole modes and sum rule

Up to now, we have focused on $\Delta L=0$ GT mode

In (p, n) spectra, finite multipole ($L \geqq 1$) modes are also observed

With increasing $\theta(q), \Delta L$ is also increased.

- Dipole mode with $\Delta L=1$ and $\Delta S=0$
- Spin-dipole (SD) mode with $\Delta \mathrm{L}=1$ and $\Delta \mathrm{S}=1$

$$
\left(\Delta J^{\pi}=0^{-}, 1^{-}, 2^{-}\right)
$$

Isovector spin-dipole (SD)
$\Delta S=1$ and $\Delta T=1$
In macroscopic picture

- Dipole oscillation of $p \uparrow(p \downarrow)$ against $n \downarrow(n \uparrow)$

For SD, what can we learn from:

* sum rule (total strength including SDR)
\div strength distributions
C. Gaarde, Nucl. Phys. A 396, 127c (1983).

Higher multipole modes and sum rule

Higher-multipole spin-isospin transition operators:

- IV Spin-scalar $\quad \hat{O}_{ \pm}=\sum_{k} r_{k}^{\ell} \boldsymbol{Y}_{\ell}\left(\hat{\boldsymbol{r}}_{\boldsymbol{k}}\right) t_{ \pm}(k)$
- IV Spin-vector

$$
\hat{O}_{ \pm}=\sum_{k}^{k} r_{k}^{\ell}\left[Y_{\ell}\left(\hat{r}_{k}\right) \otimes \sigma(k)\right]_{J^{\pi}} t_{ \pm}(k)
$$

Model-independent sum-rule

$$
\begin{aligned}
& (p, n) \\
& (n, p)
\end{aligned}
$$

SD sum-rule ($\Delta \mathrm{L}=\Delta \mathrm{S}=\Delta \mathrm{T}=1$, summed over $\mathrm{J}=\mathrm{O}^{-}, 1^{-}$, and 2^{-})

$$
S_{-}-S_{+}=\frac{9}{4 \pi}\left(N\left\langle r^{2}\right\rangle_{n}-\frac{\left.Z\left\langle r^{2}\right\rangle_{p}\right)}{\text { from charge radius }}\right.
$$

Sum-rule value gives $\left\{\begin{array}{l}\bullet \text { rms radius of neutron distribution: } \sqrt{\left\langle r^{2}\right\rangle_{n}} \\ \bullet \text { neutron skin thickness: } \delta_{n p}=\sqrt{\left\langle r^{2}\right\rangle_{n}}-\sqrt{\left\langle r^{2}\right\rangle_{p}}\end{array}\right.$

SD strengths for 90Zr

In MDA for ${ }^{90} \mathrm{Zr}(\mathrm{p}, \mathrm{n})$ and ${ }^{90} \mathrm{Zr}(\mathrm{n}, \mathrm{p})$, the $\Delta \mathrm{L}=1$ strengths are dominant at $\theta \sim 4^{\circ}$

- Resonance-like structure \rightarrow SD resonance (SDR) is clearly observed in (p, n)

Proportionality relation (assumption)

- Maximum c.s at $\theta \sim 4^{\circ}$
- Proportionality relation

$$
\sigma_{\mathrm{SD}, \pm}\left(\simeq 4^{\circ}\right)=\hat{\sigma}_{\mathrm{SD}_{ \pm}} B\left(\mathrm{SD}_{ \pm}\right)
$$

- SD unit c.s. are calculated in DWIA
- $(\mathrm{p}, \mathrm{n}): \hat{\sigma}_{\mathrm{SD}_{-}}=0.27 \mathrm{mb} / \mathrm{sr} / \mathrm{fm}^{2}$
- $(\mathrm{n}, \mathrm{p}): \hat{\sigma}_{\mathrm{SD}_{+}}=0.26 \mathrm{mb} / \mathrm{sr} / \mathrm{fm}^{2}$

> SD strengths, $B\left(S D_{ \pm}\right)$, have been deduced from $\sigma_{S D}(\Delta L=1)$

SD sum-rule and neutron skin thickness

Running sum of SD strength

$$
S_{ \pm}=\int_{0}^{E_{x}} \frac{d B\left(\mathrm{SD}_{ \pm}\right)}{d E} d E
$$

Exp. values approach
$\mathrm{HF}+\mathrm{RPA}$ values at 50 MeV

Sum-rule value

$\uparrow S_{-}-S_{+}=148 \pm 13 \mathrm{fm}^{2}$
Rms radius

$$
\begin{aligned}
& \sqrt{\left\langle r^{2}\right\rangle_{p}}=4.19 \mathrm{fm} \quad \subseteq \quad 0 \\
& \sqrt{\left\langle r^{2}\right\rangle_{n}}=4.26 \pm 0.04 \mathrm{fm} \text { from sum-rule }
\end{aligned}
$$

Excitation energy (MeV)

- Neutron skin thickness : $\delta_{n p}=\sqrt{\left\langle r^{2}\right\rangle_{n}}-\sqrt{\left\langle r^{2}\right\rangle_{p}}=0.07 \pm 0.04 \mathrm{fm}$
- cf. goal of parity violation electron scattering: ± 0.04 (1\%)
- How about SD strength distributions?

SD strength distributions

Exp. strength

Extends up to 50 MeV

- Configuration mix.

Single bump

HF+RPA (1p1h)

Underestimation at $\mathrm{E}_{\mathrm{x}}>25 \mathrm{MeV}$

- 2p2h is important

Three bumps

- $\mathrm{E}_{\mathrm{x}}\left(2^{-}\right)>\mathrm{E}_{\mathrm{x}}\left(1^{-}\right)$

Second-order RPA

Reasonably reproduce in whole region

Three bumps

Each $\Delta J^{\pi}\left(0^{-}, 1^{-}, 2^{-}\right)$distributions \rightarrow Inconsistent (tensor correlation?)
Exercise: The calculation predicts a definite sequence, i.e. $2^{-}, 1^{-}, 0^{-}$, with increasing excitation energies. This reflects the same systematics of the unperturbed p-h states. Show this systematics referring Appendix C of this lecture.

Extension of Landau-Migdal interaction

A simple extension of Landau-Migdal interaction is to introduce Tensor interaction as:

$$
V_{\mathrm{LM}}^{\sigma \tau}=C_{0}\left(\tau_{1} \cdot \tau_{2}\right)\left[g^{\prime}\left(\sigma_{1} \cdot \sigma_{2}\right)+h^{h^{\prime} S_{12}(\hat{q})}\right]
$$

tensor term

Since the tensor operator $S_{12}(\hat{q})$ can be expressed as
Exercise: Show this equation.

$$
\begin{aligned}
S_{12}(\hat{q}) & \equiv 3\left(\sigma_{1} \cdot \hat{q}\right)\left(\sigma_{2} \cdot \hat{q}\right)-\sigma_{1} \cdot \sigma_{2} \\
& \quad \begin{array}{l}
\sigma_{1} \cdot \sigma_{2}=\left(\sigma_{1} \cdot \hat{q}\right)\left(\sigma_{2} \cdot \hat{q}\right)+\left(\sigma_{1} \times \hat{q}\right) \cdot\left(\sigma_{2} \times \hat{q}\right) \\
\\
\\
=2\left(\sigma_{1} \cdot \hat{q}\right)\left(\sigma_{2} \cdot \hat{q}\right)-\left(\sigma_{1} \times \hat{q}\right) \cdot\left(\sigma_{2} \times \hat{q}\right)
\end{array}
\end{aligned}
$$

the Landau-Migdal interaction becomes:

$$
V_{\mathrm{LM}}^{\sigma \tau}=C_{0}\left(\tau_{1} \cdot \tau_{2}\right)[\left(g^{\prime}+2 h^{\prime}\right)(\underbrace{\left.\sigma_{1} \cdot \hat{q}\right)\left(\sigma_{2} \cdot \hat{q}\right)}+\left(g^{\prime}-h^{\prime}\right)(\underbrace{\left.\sigma_{1} \times \hat{q}\right) \cdot\left(\sigma_{2} \times \hat{q}\right)}]
$$

0^{-}and 2^{-}(spin-longitudinal) 1^{-}and 2^{-}(spin-transverse)

- spin-longitudinal : strengthen the residual interaction \rightarrow peak shift to high- ω (hardening)
- spin-transverse : weaken the residual interaction \rightarrow peak shift to low- ω (softening)

Spin-dipole resonance (SDR)

- 0^{-}(weak) : pure spin-longitudinal
- 1^{-}: pure spin-transverse
- 2^{-}: mixed

Tensor force can induce mode-dependent effects
$\left.\begin{array}{l}\text { - } 2^{-} \text {: almost cancelled } \\ \cdot 1^{-} \text {: peak shift to lower } \omega\end{array}\right\} \rightarrow \mathrm{E}_{\mathrm{x}}\left(2^{-}\right) \sim \mathrm{E}_{\mathrm{x}}\left(1^{-}\right)$?

Separation of SDR into each J^{π}

Separation of SDR (L=1) into $0^{-}, 1^{-}, 2^{-}$is important

- Tensor effects depends on JT

Normal multipole decomposition

- Separate into each L component
- Works very well to extract GT (L=0)
- Could NOT separate into J with same L
- Angular distributions are governed by L

Idea to separate SDR into each J^{π}

- Polarization observables are sensitive to J^{π}
- Separate c.s. (I) into longitudinal (IDL) - transverse (IDT)
- $I D_{L}\left(0^{\circ}\right)=\frac{I}{4}\left(1-2 D_{N N}+D_{L L}\right)$
- $I D_{T}\left(0^{\circ}\right)=\frac{I}{2}\left(1-D_{L L}\right)$
- 0:: Spin-longitudinal (IDL) only
- 1-: Spin-transverse (IDT) only
- 2:: Both

Multipole decomposition for longitudinal (IDL) and transverse (IDT) c.s. \rightarrow Can separate/specify not only L, but also J^{π}

Results of multipole (L and J^{T}) decomposition for ${ }^{208} \mathrm{~Pb}$

ID_{L} and $\mathrm{ID}_{\mathrm{T}} \rightarrow \Delta \mathrm{J}^{\pi}$

- Multipole (J^{T}) decomposition is successful - SD strength is separated into $0^{-}, 1^{-}$, and 2^{-}

Tensor force effects on SDR

Tensor force : $\boldsymbol{V}^{\boldsymbol{T}} \rightarrow \boldsymbol{J}^{\pi}$ dependent effects on SDR in the calculations

- Softening on 1^{-}is reproduced by considering the tensor correlation. - V^{\top} (tensor for np$) \sim 200 \mathrm{MeV} \mathrm{fm}^{5}$

Spin-dipole sum rule for ${ }^{208} \mathrm{~Pb}$

Experimental S. value : S. $=1004 \pm 22($ stat. $) \pm 163\left(\hat{\sigma}_{\mathrm{SD}}\right) \mathrm{fm}^{2}$

- Quenching by Δ is expected to be $\sim 8 \% \rightarrow$ Corrected S. $=1085 \mathrm{fm}^{2}$
- S_{+}is expected to be 11% of $S_{-} \rightarrow S_{+}=116 \mathrm{fm}^{2}$
- Estimated value: S- $-\mathrm{S}_{+}=969 \pm 24($ stat. $) \pm 163\left(\hat{\sigma}_{\text {SD }}\right) \mathrm{fm}^{2}$

Final Remark

Spin-isospin responses for unstable nuclei

- Isospin dependence
 - Skin/halo effect (Femi-level diff.) $\}$
 on resonance/residual int. will be known soon.

${ }^{56} \mathrm{Ni}(\mathrm{p}, \mathrm{n})$; GT

${ }^{132} \mathrm{Sn}(\mathrm{p}, \mathrm{n})$; GT

J. Yasuda, M. Sasano et al.,
(J. Yasuda, Doctoral dissertation)

${ }^{8} \mathrm{He}(\mathrm{p}, \mathrm{n})$; GT
M.Kobayashi et al.,
(H. Sakai @ ARIS1014)

Neutron number

${ }^{12} \mathrm{Be}(\mathrm{p}, \mathrm{n}) ; \mathrm{GT}$

K. Yako et al.,
(H. Sakai @ ARIS1014)

Homework \#3

Homework \#3

1. Let us consider the isospin transitions in a nucleus with ground-state isospin
$\mathrm{T}=\mathrm{T}_{3}=(\mathrm{N}-\mathrm{Z}) / 2$. Each transitions matrix element is proportional to the relevant isospin Clebsh-Gordan coefficient (T T 1-1|1-1). Calculate this isospin coefficients for the transitions (1)-(5) and show that, in the (p, n) reaction on a $N>Z$ nuclei, the $T-1$ state is predominantly excited compared with the T and $\mathrm{T}+1$ states.

Homework \#3 (cont’d)

2. Show the following equality.

$$
\sigma_{1} \cdot \sigma_{2}=\left(\sigma_{1} \cdot \hat{q}\right)\left(\sigma_{2} \cdot \hat{q}\right)+\left(\sigma_{1} \times \hat{q}\right) \cdot\left(\sigma_{2} \times \hat{q}\right)
$$

3. The kinetic energy resolution, ΔT_{n}, by the TOF method is related to the uncertainties of both of timing, t, and flight path length, L, as

$$
\frac{\Delta T_{n}}{T_{n}}=\gamma(\gamma+1) \sqrt{\left(\frac{\Delta t}{t}\right)^{2}+\left(\frac{\Delta L}{L}\right)^{2}}
$$

where Δt and ΔL are uncertainties of t and L, respectively, and γ is the Lorentz factor. Show this relation.
4. For the SD strength distributions, the calculation predicts a definite sequence, i.e. $2^{-}, 1^{-}$, 0^{-}, with increasing excitation energies. This reflects the same systematics of the unperturbed p-h states. Show this systematics referring Appendix C of this lecture.

Appendix A

General features of $0^{\circ}(p, n)$ cross sections

General features of $0^{\circ}(q \sim 0)(p, n)$ cross sections

General features for light nuclei ($\mathrm{A}=16-20$)
${ }^{16} \mathrm{O}$: closed-shell, spin-saturated, $\mathbf{N}=\mathbf{Z}$
Fermi and GT states are not expected.

- Consistent with exp. data w/o peaks

Small c.s. is observed.

- Inclusion of np-nh configs. into the g.s. \rightarrow Produce small GT strengths.
${ }^{18} \mathrm{O}$: two extra neutrons in $\mathrm{d}_{5 / 2}$
Strong GT transition by $n\left(d_{5 / 2}\right) \rightarrow p\left(d_{5 / 2}\right)$ to ${ }^{18} \mathrm{~F}(\mathrm{~g} . \mathrm{s}$. $)$
${ }^{20} \mathrm{Ne}$: Deformed nuclei with ${ }^{16} \mathrm{O}+\mathrm{a}$ cluster
Spin-saturated config.
\rightarrow GT states are not expected.
- Consistent with exp. data w/o prominent peaks. Small peaks are observed.
- Effects of np-nh configs. in the g.s.
J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).

General features of $0^{\circ}(q \sim 0)(p, n)$ cross sections

General features for medium and heavy nuclei Medium mass nuclei of $\mathrm{A}=\mathbf{9 0 - 1 4 4}(\mathrm{N}>\mathrm{Z})$

Sharp IAS (F) peaks are observed.
Roughly two GT bumps are observed.

- ${ }^{90} \mathrm{Zr}: \mathrm{g}_{9 / 2} \rightarrow \mathrm{~g}_{9 / 2}$ and $\mathrm{g}_{9 / 2} \rightarrow \mathrm{~g}_{7 / 2}$ (main peak)
E_{x} of main GTR $>E_{x}$ of IAS
- IAS is between two GTR bumps

Heavy mass nuclei of $A \geqq 165$

Peak positions of IAS and GTR are similar.

- IAS is NOT clearly observed with a moderate (p, n) resolution

One (high-energy) GTR bump is observed.

- Larger collectivity die to $N \gg Z$
- GT strengths concentrate to high GTR
J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).

Appendix B

Calibration method for neutron detection efficiency

Intermediate energy neutron beams

Detection of fast neutrons with good energy resolutions:

- Accomplished with relatively small detector volume (for good timing resolution in TOF).
- Detection efficiency $\varepsilon<100 \%$

Efficiency ε should be determined to derive cross sections:
Monte-Carlo simulations by modeling nuclear reactions in detectors:

- agreement between exp. data and simulations $\sim 10 \%$.
- Limited data for modeling at intermediate energies \rightarrow Large uncertainty.

Tagged neutrons:

- Neutrons, n', are produced by ${ }^{1} \mathrm{H}(\mathrm{n}, \mathrm{n}$ ') p
- Recoil protons, p, are measured.

B.A.Cecil et al.,

Nucl. Instrum. Methods 161, 439 (1979).

- Efficiency ε can be calibrated with known neutron flux.

Use a neutron-production reaction with a known cross section.

- ${ }^{7} \mathrm{Li}(p, n)^{7} \mathrm{Be}(g . s .+0.43 \mathrm{MeV})$ is commonly used.

${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})$ as a neutron source w/ known flux

${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})^{7} \mathrm{Be}$

g.s. and 0.429 MeV of ${ }^{7} \mathrm{Be}$: only particle-emission stable

- Activation cross section for the production of ${ }^{7} \mathrm{Be}$

able | particl-emission |
| :---: |
| unstable |\(\left\{\begin{array}{l}\frac{7 / 2^{-}}{}

{ }^{3}+{ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}+···\end{array}\right.\) = Total cross section to these states

Half-life of ${ }^{7} \mathrm{Be}=53.3 \mathrm{~d}$
$\rightarrow 10.4 \%$ branching to ${ }^{7} \mathrm{Li}(0.478 \mathrm{MeV})$

- Total cross section, бт, can be measured by measuring the $0.478 \mathrm{MeV} \gamma$-emission.

Experimental results for σ_{T}

$$
\begin{aligned}
& \ln \left(\sigma_{T}\right) \\
& \quad=(7.02 \pm 0.05)+(-1.13 \pm 0.01) \ln \left(E_{p}\right)
\end{aligned}
$$

- σ_{T} is well-known at $E_{p}=25-480 \mathrm{MeV}$
L.Valentin, Nucl. Phys. 62, 81 (1965).
J.D'Auria et al., Phys. Rev. C 30, 1999(1984).

${ }^{7} \mathrm{Li}(\mathrm{p}, \mathrm{n})$ as a neutron source w/ known flux
 T.N. Taddeucci et al., Phys. Rev. C 41, 2548 (1990).

The total c.s., σ_{T}, is the integral of differential c.s. $\sigma(\theta)$:

$$
\begin{aligned}
\sigma_{T} & =2 \pi \int_{0}^{\pi} \sigma(\theta) \sin \theta d \theta \\
& =\frac{2 \pi}{k_{i} k_{f}} \int \boldsymbol{q} \sigma(q) d q=\begin{array}{c}
\text { momentum-transfer } \\
\text { integral : I }
\end{array}
\end{aligned}
$$

- I_{q} deduced from σT are constant at $T_{p} \geqq 80 \mathrm{MeV}$.

By measuring the relative q -dependence of $\sigma(\mathrm{q})$, absolute values can be deduced with:

$$
\int q \sigma(q) d q=I_{q}=0.345(\mathrm{mb} / \mathrm{sr})
$$

c.m. cross sections are almost constant with $27.0 \pm 0.8 \mathrm{mb} / \mathrm{sr}$ at $T_{p}=80-795 \mathrm{MeV}$

Appendix C

Theoretical predictions of SDR

Theoretical predictions for SD strengths

Spin-dipole operator:

$$
\hat{O}_{\mathrm{SD}}^{J}=(-1)^{J} \sum_{i=1}^{A} r_{i}\left[Y_{1}\left(\hat{r}_{i}\right) \otimes \vec{\sigma}_{j}\right]_{J^{\pi}} t_{-, i}
$$

Theoretical calculations

- 1st RPA : 1p-1h only
- 2nd RPA : 1p-1h + 2p-2h

Theoretical predictions:

SDR strength is spread out in $\omega=15-35 \mathrm{MeV}$
Coupling to $2 \mathrm{p}-2 \mathrm{~h}$ excitations causes:

- broadening of SDR distributions
- spreading to higher excitations Sequence of SDR peak energies
- $2^{-}<1^{-}<0^{-}$
- same systematics of s.p. states.

