

Solution of missing GT strength problem and spin-dipole resonance

- Neutron measurement
- Proportionality between (p,n) 0° cross section and B(GT)
- Theoretical solutions for missing GT strength problem
- Multipole decomposition analysis
- Experimental solution for missing GT strength problem
- Sum rules for higher-multipole excitations
- Spin-dipole resonance
- Homework

Neutron measurements

(p,n) reactions

Two different techniques for analyzing intermediate-energy neutron momentum:

Charge-exchange method:

- Transfer the neutron momentum to a proton via a secondary (n,p) reaction.
- Measure the recoiled proton momentum in a conventional spectrometer.

Time-Of-Flight (TOF) method:

- Measure the neutron TOF by detecting its arrival time at a hodoscope.
- Flight path length L is fixed and typically L \ge 100 m.

Neutron charge-exchange facilities

Neutrons are converted to protons by ¹H(n,p) and protons are analyzed/measured.

Advantage:

• Enable (p,n) studies where long TOF paths are not feasible.

Disadvantage:

- Final energy resolutions are limited to about 1 MeV.
- Difficult to measure polarization transfers.

can overcome by TOF method

Neutron TOF facilities

Neutron energies are determined by measuring their time-of-flight (TOF).

TOF spectra and Neutron detection efficiency

J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).

Typical TOF energy spectra for ¹⁴C(p,n)¹⁴N at 80-650 MeV and 0 degrees

Detection of fast neutrons with good energy resolutions:

- Accomplished with relatively small detector volume (for good timing resolution in TOF).
- Detection efficiency $\varepsilon < 100\%$

Efficiency ε should be determined to derive cross sections:

Exercise/Homework:

Explain how the neutron detector's efficiency is determined by referring Appendix B.

Proportionality between (p,n) cross section and B(GT)

Empirical proportionality between (p,n) σ(0°) and B(GT)

For low-lying GT states, following two values were measured.

- Beta decay transition strengths : B(GT)
- Cross sections by (p,n) at 0° (q \sim 0)

Empirical proportionality has been found/established.

 $\sigma(0^{\circ}) = \hat{\sigma}_{\mathrm{GT}}(A)F(q,\omega)B(\mathrm{GT}) \simeq \hat{\sigma}_{\mathrm{GT}}(A)B(\mathrm{GT})$

• $\hat{\sigma}_{\mathrm{GT}}(A)$: GT unit cross section (proportionality coefficient) A-dependent (and T_p-dependent)

Ref.

"PWBA"

Lecture by Ichimura-san

Proportionality between (p,n) σ(0°) and B(GT)

Experimental results for the GT transitions in p-shell nuclei

Proportionality between (p,n) $\sigma(0^{\circ})$ and B(GT) has been established.

T.N.Taddeucci et al., Nucl. Phys. A 469, 125 (1987).

Missing GT strength problem

Experimental verification of GT sum rule

Experimental (p,n) cross section up to GTR is converted to B(GT)

- $\sigma^{(p,n)}(0^{\circ}) \simeq \hat{\sigma}_{\mathrm{GT}}(A) \cdot B(\mathrm{GT})$
- Beyond GTR, L≥1 excitations would be dominant → excluded.

Fraction of GT sum-rule strength

Experimental S(GT₋) = 50-60% of 3(N-Z)

 3(N-Z) is the minimum value in the case of S(GT₊)=0.

→ missing GT strength problem

C. Gaarde, Nucl. Phys. A 369, 258 (1981).

Theoretical solutions for the "missing GT strength" problem

Two possible mechanisms for GT quenching effect

Quark-degree (Δ-isobar) effect

A nucleon is assumed as a bag of three quarks.

GT $\Delta S = \Delta T = 1$ transition can excite nucleon (N) to Δ -isobar (Δ).

If the coupling between p-h and Δ -h is strong

- p-h excitations of GTR in ω ~10 MeV mixed with Δ -h excitations at ω ~300 MeV

Coupling is repulsive.

• GTR strength is moved to Δ -h excitation region \rightarrow GTR strength is quenched.

no Pauli blocking for Δ excitation
 large number of Δ-h configurations

 able to bridge Δω=300 MeV

G.F.Bertsch and H.Esbensen, Rep. Prog. Phys. 50, 607 (1987).

Two possible mechanisms for GT quenching effect

Configuration mixing effect

- 1p-1h excitations mix with 2p-2h excitations
- GTR strength is moved to the continuum beyond GTR.

Theoretical prediction for B(GT) of ⁹⁰Zr(p,n)

GTR < 10 MeV (NOT shown)

• \sim 50% of sum-rule

Coupling to 2p-2h configurations

• \sim 50% of sum-rule

GTR is quenched by \sim 50% due to configuration mixing

G.F.Bertsch and I.Hamamoto, Phys. Rev. C 26, 1323 (1982).

Separation/identification of B(GT) in continuum (ω >20 MeV) is important.

The "extended" Landau-Migdal interaction

The "original" Landau-Migdal interaction V_{LM} is:

 $V_{
m LM} = C_0 \left[f_0 + f_0'(au_1 \cdot au_2) + g_0(\sigma_1 \cdot \sigma_2) + g_0'(\sigma_1 \cdot \sigma_2)(au_1 \cdot au_2)
ight]$

• V^{LM} is a zero-range interaction

For GT ($\Delta S = \Delta T = 1$) excitation, the following spin-isospin term contributes:

spin-isospin ($\Delta S = \Delta T = 1$) : $V_{LM}^{\sigma\tau} = C_0 g'(\tau_1 \cdot \tau_2)(\sigma_1 \cdot \sigma_2)$ we set $g'_0 \equiv g'$ • pionic unit : $C_0 = \frac{f_{\pi NN}^2}{m_{\pi}^2} \simeq 400 \,\mathrm{MeV \, fm^3}$

The Landau-Migdal interaction can be extended to include Δ as:

$$V_{\rm LM} = \begin{bmatrix} \frac{f_{\pi NN}^2}{m_{\pi}^2} g'_{NN} + \frac{f_{\pi NN} f_{\pi N\Delta}}{m_{\pi}^2} g'_{N\Delta} \end{bmatrix} (\tau_1 \cdot \tau_2) (\sigma_1 \cdot \sigma_2)$$

$$\begin{array}{c} coupling b/w \\ p-h \ states \end{array} \begin{array}{c} coupling b/w \\ p-h \ and \ \Delta -h \ states \end{array} \\ \hline Two \ Landau-Migdal \ parameters, \ g'_{NN} \ and \ g'_{N\Delta} \end{bmatrix}$$

$$(\tau_1 \cdot \tau_2) (\sigma_1 \cdot \sigma_2)$$

$$\begin{array}{c} f_{\pi NN} \ : \pi_{NN} \ coupling \ const. \\ f_{\pi N\Delta} \ : \pi_{N\Delta} \ coupling \ const. \end{bmatrix}$$

A.B.Migdal, "Theory of Finite Systems and Application to Atomic Nuclei" (1967).

Two possible mechanisms and LM parameters

Landau-Migdal interaction with N and Δ : $V_{LM} = \frac{f_{\pi NN}^2}{m_{\pi}^2}g'_{NN} + \frac{f_{\pi NN}f_{\pi N\Delta}}{m_{\pi}^2}g'_{N\Delta}$ Quark-degree (Δ -isobar) effect Assumption: $g'_{N\Delta} = g'_{NN}$ (universality ansatz) Coupling between p-h and Δ -h is *large (strong repulsion)* • Significant GT strengths move to Δ region (ω ~300 MeV) • GTR strength is quenched $\sim 10 \text{ MeV}$ $\sim 300 \text{ MeV}$

Configuration mixing effect

In microscopic calculations, $g'_{N\Delta} < g'_{NN} \; [g'_{N\Delta} \simeq (0.6-0.7)g'_{NN}]$

- One-boson ex. model by Arima et al., and Towner et al.
- G-matrix calc. by Dickhoff et al. and Nakayama et al.

Coupling between p-h and Δ -h is *small (weak repulsion)*

- Strength-shift to Δ region is small
- GTR strength is quenched by configuration mixing

g'_{NN} and $g'_{N\Delta}$ dependences on GTR

Landau-Migdal interaction at q=0

T.W. et al., Phys. Rev. C 72, 067303 (2005).

10

15

Mass difference ω (MeV)

20

25

30

[Strength moves to Δ region]

Multipole decomposition analysis

How to extract the GT strength in the continuum

There would be GT ΔL=0 strength:

- below the GTR
- beyond the GTR

Extraction of these GT strength in the continuum:

Assumption:

• The measured cross section at an energy transfer ω is a coherent sum of cross sections from several ΔL

$$\sigma(\omega) = \sum_{\Delta L} a_{\Delta L} \, \sigma_{\Delta L}(\omega) = a_{\Delta L=0} \sigma_{\Delta L=0}(\omega) + a_{\Delta L=1} \sigma_{\Delta L=1}(\omega) + \cdots$$

• $a_{\Delta L}$: relative strengths of the individual multipoles

Note:

- In practice, $\sigma(\omega)$ is expressed as an incoherent sum of c.s. from several ΔJ^{π} as

 $\sigma(\omega) = \sum_{\Delta J^{\pi}} a_{\Delta J_{\pi}} \, \sigma_{\Delta J^{\pi}}(\omega)$

• In general, the possible three $\Delta J = \Delta L \pm 1$, ΔL members for a ΔL are grouped because of the small ΔJ dependence.

Here, we express $\sigma(\omega)$ as a incoherent sum of cross sections from several ΔL for simplicity.

How to extract the GT strength in the continuum

Assumption:

$$\sigma(\omega) = \sum_{\Delta L} a_{\Delta L} \, \sigma_{\Delta L}(\omega) = a_{\Delta L=0} \sigma_{\Delta L=0}(\omega) + a_{\Delta L=1} \sigma_{\Delta L=1}(\omega) + \cdots$$

Because $a_{\Delta L}$ should be independent of angle θ , angle dependence can be expressed as

$$\begin{aligned} \sigma(\theta_{1},\omega) &= a_{\Delta L=0} \sigma_{\Delta L=0}(\theta_{1},\omega) + a_{\Delta L=1} \sigma_{\Delta L=1}(\theta_{1},\omega) + \cdots \\ \sigma(\theta_{2},\omega) &= a_{\Delta L=0} \sigma_{\Delta L=0}(\theta_{2},\omega) + a_{\Delta L=1} \sigma_{\Delta L=1}(\theta_{2},\omega) + \cdots \\ \sigma(\theta_{3},\omega) &= a_{\Delta L=0} \sigma_{\Delta L=0}(\theta_{3},\omega) + a_{\Delta L=1} \sigma_{\Delta L=1}(\theta_{3},\omega) + \cdots \\ \vdots &\vdots &\vdots &\vdots \\ experimental & angular-distribution & angular-distribution \\ data & of \Delta L=0 \ cross \ section & of \Delta L=1 \ cross \ section \end{aligned}$$

If angular distributions (θ -dependences) of $\sigma_{\Delta L=0}$ and $\sigma_{\Delta L=1}$ are significantly different, relative strengths $a_{\Delta L}$ can be determined by a χ^2 fitting.

ΔL dependence on cross section

The (p,n) reaction mainly occurs around the nuclear surface (... strong absorption)

The angular momentum transfer, ΔL , is related to momentum transfer, q, and nuclear radius, R, as

 $\Delta L \simeq q \cdot R \quad \cdots$

The momentum transfer q is expressed with the incident momentum p_{in} and scattering angle θ as:

Thus, the cross section takes a maximum at θ depending on ΔL .

Expectations for ²⁰⁸Pb(p,n) at 200 MeV

- *p*_{in} = 640 MeV/c
- $R = 1.1 A^{1/3} \times 80\% = 5 \text{ fm}$

Angular distributions would be strongly depend on ΔL

²⁰⁸ Pb(p,n)	θ
ΔL=0	0 °
ΔL=1	4°
ΔL=2	8°

Angular distributions in DWIA

Comparison between experimental angular distributions and DWIA calculations.

Angular distributions are characterized by angular momentum transfer ΔL .

- Peak positions shift to larger angles w/ increasing ΔL as expected.
- Experimental angular distributions are well reproduced by DWIA calculations.

Multipole decomposition analysis

For each energy transfer ω , it is assumed that:

K.Yako et al., Phys. Lett. B 615, 193 (2005). *M.Ichimura, H.Sakai, T.W., Prog. Part. Nucl. Phys.* 56, 446 (2006).

The measured c.s. = An incoherent sum of c.s. arising from different ΔJ^{π}

 $\sigma^{
m exp}(heta,\omega) = \sum_{\Delta J^{\pi}} a_{\Delta J^{\pi}} \, \sigma^{
m calc}_{\Delta J^{\pi}}(heta,\omega)$

Data: ⁹⁰Zr(p,n) and ⁹⁰Zr(n,p) at 300 MeV

- $a_{\Delta J^{\pi}}$: relative strengths of the individual multipoles
- $\sigma^{
 m calc}_{\Delta J^{\pi}}$: angular distributions obtained by DWIA calculations

Angular distributions, $\sigma^{
m calc}_{\Delta J^{\pi}}$, are prepared for several p-h combinations:

For each $\sigma^{calc}_{\Delta J^{\pi}}$, the strength $a_{\Delta J^{\pi}}$ is determined to minimize the χ^2 -value defined by

$$\chi^2(\omega) = \sum_{ heta} \Bigg[rac{\sigma^{\exp}(heta, \omega) - \sum_{\Delta J^{\pi}} a_{\Delta J^{\pi}} \, \sigma^{ ext{calc}}_{\Delta J^{\pi}}(heta, \omega)}{\delta \sigma^{\exp}(heta, \omega)} \Bigg]$$

- The p-h combination giving the minimum χ^2 is chosen.
- ΔL is limited up to 3 ($\Delta J^{\pi}=4^{-}$) due to:
 - $\Delta L_{\max} < \Delta k \cdot R_{Zr} = 4$
 - limited data points (7 for (p,n))

Results of MDA

For a given ΔL , ΔJ dependence on DWIA cross sections is small:

• ΔJ transitions (0⁻,1⁻,2⁻) are grouped to the lowest dominant ΔL (1).

MDA results are in good agreement with the measured cross sections.

- For ⁹⁰(p,n), a fairly large contribution of $\Delta L=0$ up to ω ~50 MeV.
- For ⁹⁰Zr(p,n), a relatively small ΔL =0 component up to ω ~30 MeV.

Excitation energy of ⁹⁰Y (MeV)

ΔJ^π could not be separated in this MDA.

GT unit cross sections

Systematic study for 0° (p,n) cross sections at 297 MeV

- 58 \leq A \leq 120 (⁵⁸Ni \sim ¹²⁰Sn)
- B(GT)'s are known from beta decay ft values
- GT unit cross sections are obtained as a function of A

$$\hat{\sigma}_{
m GT}$$
 for ⁹⁰Zr $ightarrow$ $\hat{\sigma}_{
m GT}=3.36\pm0.17\,{
m mb/sr}$

GT strength distributions

$rac{d^2 \sigma_{\Delta L=0}(heta,\omega)}{d\Omega d\omega} = \hat{\sigma}_{\mathrm{GT}} F(heta,\omega) B(\mathrm{GT};\omega)$

K.Yako et al., Phys. Lett. B 615, 193 (2005). M.Ichimura, H.Sakai, T.W., Prog. Part. Nucl. Phys. 56, 446 (2006).

Experimental B(GT) distributions

(p,n): fairly large B(GT) (0.45 MeV⁻¹) at ω =20-60 MeV (n,p): significant B(GT) at ω =20-60 MeV

Comparison with calc. including 2p2h effects

Dressed-particle RPA by Rijsdijk et al.

- Predict significant B(GT) for (p,n)
 - supported by the MDA result
- Reproduce both low-lying GT and GTR for (p,n)
- strength at \sim 30 MeV for (n,p)

But underestimate at $\omega{\sim}40$ MeV for both modes

Contribution from IVSM ($2\hbar\omega$) resonances by $\,r^2\sigma au\,$ o should be subtracted.

IVSM contribution

ΣB(GT) includes IV spin-monopole (IVSM) strength.

- IVSM : ΔJ^{π} =1+ transition with $\hat{O}(\mathrm{IVSM}) = r^2 \sigma t_\pm$ (c.f GT: $\hat{O}(\mathrm{GT}) = \sigma t_\pm$)
- $\Delta L = 0$: indistinguishable from GT in a MDA

Estimation of IVSM

IVSM contribution is estimated in DWIA.

• The transition matrix was calculated by using the operator:

 $\hat{O}(\mathrm{IVSM}) = r^2 \sigma \, t_\pm$

• In terms of p-h excitations from |0> to |JM>, the normal-mode wave function is:

$$egin{aligned} |JM
angle &= \sum_{ph} \chi^{ph}_{JM} |ph; JM
angle \ &= \sum_{ph} \chi^{ph}_{JM} [a^{\dagger}_{p}a_{h}]_{JM} |0
angle \end{aligned}$$

where

$$\hat{\gamma}^{ph}_{JM} = rac{\langle ph; JM | \hat{O}^{\dagger}_{LJ} | 0
angle}{\sqrt{\sum_{ph} |\langle ph; JM | \hat{O}^{\dagger}_{LJ} | 0
angle |^2}}$$

IVSM contribution

The calculated IVSM cross section in DWIA is

(p,n) t₋ mode : 4.2 \pm 0.9 in the GT unit

- (n,p) t_+ mode : 2.5 \pm 0.3 in the GT unit
- The sum-rule value has been assumed (maximum contribution of IVSM).

By subtracting the IVSM contribution, quenching factor becomes:

$$Q \equiv rac{S_{
m GT}^- - S_{
m GT}^+}{3(N-Z)} = 0.86 \pm 0.07$$

 \rightarrow 86±7 % of the sum rule value of 3(N-Z)=30 has been found up to ω =56 MeV

- Configuration mixing : dominant
- Δ -hole : minor (~ 10%) effect (but might be not negligible)

K.Yako et al., Phys. Lett. B 615, 193 (2005). *M.Sasano et al., Phys. Rev. C* 79, 024602 (2009).

Landau-Migdal parameters, g'_{NN} and $g'_{N\Delta}$

g'n∆

Spin-isospin excitations/GRs with higher multipoles

Higher multipole modes and sum rule

Up to now, we have focused on $\Delta L=0$ GT mode

In (p,n) spectra, finite multipole (L≥1) modes are also observed

With increasing θ (q), ΔL is also increased.

- Dipole mode with $\Delta L=1$ and $\Delta S=0$
- Spin-dipole (SD) mode with $\Delta L=1$ and $\Delta S=1$

 $(\Delta J^{\pi} = 0^{-}, 1^{-}, 2^{-})$

Isovector spin-dipole (SD)

 $\Delta S=1$ and $\Delta T=1$

In macroscopic picture

• Dipole oscillation of $p\uparrow (p\downarrow)$ against $n\downarrow (n\uparrow)$

For SD, what can we learn from: *sum rule (total strength including SDR) strength distributions*

Higher multipole modes and sum rule

Higher-multipole spin-isospin transition operators:

IV Spin-scalar
$$\hat{O}_{\pm} = \sum_{k} r_{k}^{\ell} Y_{\ell}(\hat{r}_{k}) t_{\pm}(k)$$
IV Spin-vector $\hat{O}_{\pm} = \sum_{k}^{k} r_{k}^{\ell} [Y_{\ell}(\hat{r}_{k}) \otimes \sigma(k)]_{J^{\pi}} t_{\pm}(k)$

Model-independent sum-rule

$$\frac{(p,n)}{\sum_{\substack{m \\ m \mid \hat{O}_{-} \mid 0 \rangle}} \left| \begin{array}{c} (n,p) \\ \downarrow \\ (m \mid \hat{O}_{-} \mid 0 \rangle \right|^{2} - \sum_{\substack{n \\ n \mid \hat{O}_{+} \mid 0 \rangle}} \left| \begin{array}{c} (2J+1) \\ = \frac{(2J+1)}{4\pi} \left[N \langle r^{2\ell} \rangle_{n} - Z \langle r^{2\ell} \rangle_{p} \right] \times \begin{cases} 1 : \text{scalar} \\ 3 : \text{vector} \end{cases} \\ = S^{+} \end{cases}$$

SD sum-rule ($\Delta L = \Delta S = \Delta T = 1$, summed over J=0⁻, 1⁻, and 2⁻)

$$S_{-} - S_{+} = \frac{9}{4\pi} (N \langle r^{2} \rangle_{n} - Z \langle r^{2} \rangle_{p})$$
from charge radius
$$Sum-rule value gives \left\{ \begin{array}{l} \bullet \text{ rms radius of neutron distribution: } \sqrt{\langle r^{2} \rangle_{n}} \\ \bullet \text{ neutron skin thickness: } \delta_{np} = \sqrt{\langle r^{2} \rangle_{n}} - \sqrt{\langle r^{2} \rangle_{p}} \end{array} \right.$$

SD strengths for 90Zr

In MDA for ⁹⁰Zr(p,n) and ⁹⁰Zr(n,p), the $\Delta L=1$ strengths are dominant at $\theta \sim 4^{\circ}$

• Resonance-like structure → SD resonance (SDR) is clearly observed in (p,n)

Proportionality relation (assumption)

- Maximum c.s at $\theta \sim 4^{\circ}$
- Proportionality relation

 $\sigma_{\mathrm{SD},\pm}(\simeq 4^\circ) = \hat{\sigma}_{\mathrm{SD}_\pm} B(\mathrm{SD}_\pm)$

- SD unit c.s. are calculated in DWIA
 - (p,n) : $\hat{\sigma}_{\mathrm{SD}_{-}} = 0.27 \, \mathrm{mb/sr/fm^2}$
 - (n,p): $\hat{\sigma}_{{
 m SD}_+} = 0.26 \, {
 m mb}/{
 m sr}/{
 m fm}^2$

SD strengths, $B(SD_{\pm})$, have been deduced from σ_{SD} ($\Delta L=1$)

K. Yako et al., PRC 74, 051303(R) (2006).

SD sum-rule and neutron skin thickness

• Neutron skin thickness : $\delta_{np}=\sqrt{\langle r^2
angle_n}-\sqrt{\langle r^2
angle_p}=0.07\pm0.04\,{
m fm}$

- cf. goal of parity violation electron scattering: ±0.04 (1%)
- How about SD strength distributions?

SD strength distributions

Each ΔJ^{π} (0⁻, 1⁻, 2⁻) distributions \rightarrow Inconsistent (tensor correlation?)

Exercise: The calculation predicts a definite sequence, i.e. 2^- , 1^- , 0^- , with increasing excitation energies. This reflects the same systematics of the unperturbed p-h states. Show this systematics referring Appendix C of this lecture.

Extension of Landau-Migdal interaction

A.B.Migdal, "Theory of Finite Systems and Application to Atomic Nuclei" (1967).

A simple extension of Landau-Migdal interaction is to introduce Tensor interaction as:

$$V_{\text{LM}}^{\sigma\tau} = C_0(\tau_1 \cdot \tau_2) \left[g'(\sigma_1 \cdot \sigma_2) + \underbrace{h'S_{12}(\hat{q})}_{\text{tensor term}} \right]$$

Since the tensor operator $S_{12}(\hat{q})$ can be expressed as
 $S_{12}(\hat{q}) \equiv 3(\sigma_1 \cdot \hat{q})(\sigma_2 \cdot \hat{q}) - \sigma_1 \cdot \sigma_2$
 $\int \int \sigma_1 \cdot \sigma_2 = (\sigma_1 \cdot \hat{q})(\sigma_2 \cdot \hat{q}) + (\sigma_1 \times \hat{q}) \cdot (\sigma_2 \times \hat{q})$
 $= 2(\sigma_1 \cdot \hat{q})(\sigma_2 \cdot \hat{q}) - (\sigma_1 \times \hat{q}) \cdot (\sigma_2 \times \hat{q})$

the Landau-Migdal interaction becomes:

$$V_{\rm LM}^{\sigma\tau} = C_0(\tau_1 \cdot \tau_2) \left[(g' + 2h')(\sigma_1 \cdot \hat{q})(\sigma_2 \cdot \hat{q}) + (g' - h')(\sigma_1 \times \hat{q}) \cdot (\sigma_2 \times \hat{q}) \right]$$

0⁻ and 2⁻ (*spin-longitudinal*) 1⁻ and 2⁻ (*spin-transverse*)

- spin-longitudinal : strengthen the residual interaction \rightarrow peak shift to high- ω (hardening)
- spin-transverse : weaken the residual interaction \rightarrow peak shift to low- ω (softening)

Spin-dipole resonance (SDR)

- 0⁻ (weak) : pure spin-longitudinal
- 1⁻ : pure spin-transverse
- 2⁻ : mixed

Tensor force can induce mode-dependent effects

- 2⁻: almost cancelled
- 1⁻ : peak shift to lower ω

$$\rightarrow E_x(2^-) \sim E_x(1^-)$$
?

Separation of SDR into each J^{π}

Separation of SDR (L=1) into 0⁻, 1⁻, 2⁻ is important

Tensor effects depends on J^π

Normal multipole decomposition

- Separate into each L component
 - Works very well to extract GT (L=0)
- Could NOT separate into J^{π} with same L
 - Angular distributions are governed by L

Idea to separate SDR into each J^{π}

- Polarization observables are sensitive to J^{π}
- Separate c.s. (I) into longitudinal (ID_L) transverse (ID_T)
 - $ID_L(0^\circ) = \frac{I}{4}(1 2D_{NN} + D_{LL})$
 - $ID_T(0^\circ) = \frac{I}{2}(1 D_{LL})$
 - O⁻: Spin-longitudinal (ID_L) only
 - 1⁻: Spin-transverse (ID_T) only
 - 2⁻: Both

Multipole decomposition for longitudinal (ID_L) and transverse (ID_T) c.s. \rightarrow Can separate/specify not only L, but also J^T

T.W. et al., Phys. Rev. C 85, 064606 (2012).

Results of multipole (L and J^π) decomposition for ²⁰⁸Pb

Tensor force effects on SDR

Tensor force : $V^T \rightarrow J^{\pi}$ dependent effects on SDR in the calculations

- Softening on 1⁻ is reproduced by considering the tensor correlation.
 V^T (tensor for np) ~ 200 MeV fm⁵
 - *T.W. et al., Phys. Rev. C* 85, 064606 (2012).

Spin-dipole sum rule for ²⁰⁸Pb

Experimental S₋ value : S₋ = 1004 ± 22(stat.) ± 163($\hat{\sigma}_{SD}$) fm²

- Quenching by Δ is expected to be $\sim 8\% \rightarrow \text{Corrected S}_{-} = 1085 \text{ fm}^2$
- S_+ is expected to be 11% of $S_- \rightarrow S_+ = 116 \text{ fm}^2$
- Estimated value: S₋ S₊ = 969 \pm 24(stat.) \pm 163($\hat{\sigma}_{SD}$) fm²

Final Remark

Spin-isospin responses for unstable nuclei

Homework #3

Homework #3

1. Let us consider the isospin transitions in a nucleus with ground-state isospin T=T₃=(N-Z)/2. Each transitions matrix element is proportional to the relevant isospin Clebsh-Gordan coefficient (T T 1 -1|1 -1). Calculate this isospin coefficients for the transitions ①–⑤ and show that, in the (p,n) reaction on a N>Z nuclei, the T-1 state is predominantly excited compared with the T and T+1 states.

Homework #3 (cont'd)

2. Show the following equality.

$$\sigma_1 \cdot \sigma_2 = (\sigma_1 \cdot \hat{q})(\sigma_2 \cdot \hat{q}) + (\sigma_1 \times \hat{q}) \cdot (\sigma_2 \times \hat{q})$$

3. The kinetic energy resolution, ΔT_n , by the TOF method is related to the uncertainties of both of timing, *t*, and flight path length, *L*, as

$$rac{\Delta T_n}{T_n} = \gamma(\gamma+1) \sqrt{\left(rac{\Delta t}{t}
ight)^2 + \left(rac{\Delta L}{L}
ight)^2}$$

where Δt and ΔL are uncertainties of *t* and *L*, respectively, and γ is the Lorentz factor. Show this relation.

4. For the SD strength distributions, the calculation predicts a definite sequence, i.e. 2⁻, 1⁻, 0⁻, with increasing excitation energies. This reflects the same systematics of the unperturbed p-h states. Show this systematics referring Appendix C of this lecture.

Appendix A

General features of 0° (p,n) cross sections

General features of 0° (q \sim 0) (p,n) cross sections

General features for light nuclei (A=16-20)

¹⁶O: closed-shell, spin-saturated, N=Z

Fermi and GT states are not expected.

Consistent with exp. data w/o peaks

Small c.s. is observed.

- Inclusion of np-nh configs. into the g.s.
 - \rightarrow Produce small GT strengths.

¹⁸O: two extra neutrons in d_{5/2}

Strong GT transition by $n(d_{5/2}) \rightarrow p(d_{5/2})$ to ¹⁸F(g.s.)

$^{20}\mbox{Ne}$: Deformed nuclei with $^{16}\mbox{O}+\alpha$ cluster

Spin-saturated config.

- \rightarrow GT states are not expected.
- Consistent with exp. data w/o prominent peaks.

Small peaks are observed.

• Effects of np-nh configs. in the g.s.

J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).

General features of 0° (q \sim 0) (p,n) cross sections

General features for medium and heavy nuclei

Medium mass nuclei of A = 90-144 (N>Z)

Sharp IAS (F) peaks are observed.

Roughly two GT bumps are observed.

• 90 Zr : $g_{9/2} \rightarrow g_{9/2}$ and $g_{9/2} \rightarrow g_{7/2}$ (main peak)

 E_x of main $GTR > E_x$ of IAS

• IAS is between two GTR bumps

Heavy mass nuclei of $A \ge 165$

Peak positions of IAS and GTR are similar.

• IAS is NOT clearly observed with a moderate (p,n) resolution

One (high-energy) GTR bump is observed.

- Larger collectivity die to N $\gg Z$
- GT strengths concentrate to high GTR

J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).

Appendix B

Calibration method for neutron detection efficiency

Intermediate energy neutron beams

Detection of fast neutrons with good energy resolutions:

- Accomplished with relatively small detector volume (for good timing resolution in TOF).
- Detection efficiency $\epsilon < 100\%$

Efficiency ε should be determined to derive cross sections:

Monte-Carlo simulations by modeling nuclear reactions in detectors:

- agreement between exp. data and simulations \sim 10%.
- Limited data for modeling at intermediate energies
 → Large uncertainty.

Tagged neutrons:

- Neutrons, n', are produced by ¹H(n,n')p
- Recoil protons, p, are measured.
 - Recoil proton flux = neutron flux (tagged).
- Efficiency ϵ can be calibrated with known neutron flux.

Use a neutron-production reaction with a known cross section.

• ⁷Li(p,n)⁷Be(g.s.+0.43 MeV) is commonly used.

B.A.Cecil et al., Nucl. Instrum. Methods 161, 439 (1979).

⁷Li(p,n) as a neutron source w/ known flux

⁷Li(p,n) as a neutron source w/ known flux T.N. Taddeucci et al., Phys. Rev. C 41, 2548 (1990).

• I_q deduced from σ_T are constant at $T_p \ge 80$ MeV.

By measuring the relative q-dependence of $\sigma(q)$, absolute values can be deduced with:

Theoretical predictions of SDR

Theoretical predictions for SD strengths

0-

2

Spin-dipole operator: $\hat{O}^J_{ ext{SD}} = (-1)^J \sum r_i [Y_1(\hat{r}_i) \otimes ec{\sigma}_j]_{J^\pi} t_{-,i}$ **Theoretical calculations**

- 1st RPA : 1p-1h only
- 2nd RPA : 1p-1h + 2p-2h

Theoretical predictions:

SDR strength is spread out in ω =15-35 MeV

Coupling to 2p-2h excitations causes:

- broadening of SDR distributions
- spreading to higher excitations

Sequence of SDR peak energies

- 2⁻ < 1⁻ < 0⁻
- same systematics of s.p. states.

