New dynamic critical phenomena in nuclear and quark superfluids

Noriyuki Sogabe (Keio University)

36th Heavy Ion Cafe, June 22, 2019, at Sofia University

Phys. Rev. D. **95**, 034028 (2017) In collaboration with Naoki Yamamoto

Phase diagram of QCD

K. Fukushima, T. Hatsuda, Rept. Prog. Phys. (2010)

phases of QCD

QCD Critical points

Universality classes of QCD critical points

Universality class	High-temperature	High-density
Static	3D Ising	?
Dynamic	Model H H. Fujii (2003), D. T. Son and M. A. Stephanov (2004)	?

Dynamic universality class

Microscopic theory

Dynamic universality class

Microscopic theory

Effective theory

Hydrodynamic variables:

- coarse-graining · Order parameters
 - · Conserved charge densities
 - \cdot Nambu-Goldstone modes

Dynamic universality class

Microscopic theory

Effective theory

coarse-graining

Hydrodynamic variables:

- Order parameters
 - · Conserved charge densities
 - Nambu-Goldstone modes

 $\xi \gg \Lambda_{\rm QCD}^{-1}$

Same symmetries

Conventional classification

Hohenberg and Halperin: Theory of dynamic critical phenomena

TABLE I.	Some dynamical	models	treated	by	renormalization-group methods.	
----------	----------------	--------	---------	----	--------------------------------	--

Model	Designation	System	Dimension order of parameter	Non-conserved fields	Conserved fields	Non-vanishing Poisson bracket
	A	Kinetic Ising anisotropic magnets	n	ψ	None	None
Relaxational	В	Kinetic Ising uniaxial ferromagnet	n	None	ψ	None
	C	Anisotropic magnets structural transition	п	ψ	m	None
Fluid	н	Gas—liquid binary fluid	. 1	None	ψj	{ψ, j }
Symmetric planar magnet	E	Easy-plane magnet, $h_z = 0$	2	ψ	m	$\{\psi,m\}$
Asymmetric planar magnet	F	Easy-plane magnet, $h_z \neq 0$ superfluid helium	2	ψ	m	$\{\psi, m\}$
Isotropic antiferromagnet	G	Heisenberg antiferromagnet	3	ψ	m	$\{\psi, m\}$
Isotropic ferromagnet	J	Heisenberg ferromagnet	3	None	ψ	{ψ, ψ}

P. C. Hohenberg and B. I. Halperin (1977)

Universality classes of QCD critical points

Universality class	High-temperature	High-density
Static	3D Ising	3D Ising
Dynamic	Model H H. Fujii (2003), D. T. Son and M. A. Stephanov (2004)	New class

New dynamic universality class beyond the conventional classification

Outline

2 Static critical phenomena

3 Dynamic critical phenomena

Hydrodynamic variables

- Chiral condensate: $\sigma \equiv \bar{q}q \langle \bar{q}q \rangle$
- Baryon number density: $n \equiv \bar{q}\gamma^0 q \langle \bar{q}\gamma^0 q \rangle$
- Superfluid phonon: $\langle qq \rangle \sim e^{i\theta}$
- Energy density: $\varepsilon \equiv T^{00} \langle T^{00} \rangle$ Momentum density: $\pi^i \equiv T^{0i}$

Ginzburg-Landau theory

$$F[\sigma, n, \theta] = \int d\mathbf{r} \left[\frac{a}{2} (\nabla \sigma)^2 + b \nabla \sigma \cdot \nabla n + \frac{c}{2} (\nabla n)^2 + \frac{d}{2} (\nabla \theta)^2 + V(\sigma, n) + \cdots \right]$$
$$V(\sigma, n) = \frac{A}{2} \sigma^2 + B \sigma n + \frac{C}{2} n^2$$

- Near critical point → Small order parameter
- Interested in long-range behavior → Derivative expansion
- QCD symmetries \longrightarrow constrains on the expansion

chiral symmetry, baryon-number symmetry, CPT symmetries

Ginzburg-Landau theory

$$F[\sigma, n, \theta] = \int d\mathbf{r} \left[\frac{a}{2} (\nabla \sigma)^2 + b \nabla \sigma \cdot \nabla n + \frac{c}{2} (\nabla n)^2 + \frac{d}{2} (\nabla \theta)^2 + V(\sigma, n) + \cdots \right]$$
$$V(\sigma, n) = \frac{A}{2} \sigma^2 + B \sigma n + \frac{C}{2} n^2$$

• Superfluid phonon θ is irrelevant to the statics.

$$\begin{split} F[\sigma,n,\theta] &= F_{\rm MF}[\sigma,n] + F_{\rm MF}[\theta] + \gamma \sigma (\boldsymbol{\nabla}\theta)^2 + \cdots \\ & \swarrow & \swarrow \\ & \text{decoupled from} & \text{derivative coupling} \\ & \text{the time reversal symmetry} & \text{due to U(1) symmetry} \end{split}$$

Ginzburg-Landau theory

$$F[\sigma, n, \theta] = \int d\mathbf{r} \left[\frac{a}{2} (\nabla \sigma)^2 + b \nabla \sigma \cdot \nabla n + \frac{c}{2} (\nabla n)^2 + \frac{d}{2} (\nabla \theta)^2 + V(\sigma, n) + \cdots \right]$$
$$V(\sigma, n) = \frac{A}{2} \sigma^2 + B \sigma n + \frac{C}{2} n^2$$

Static critical phenomena

$$\langle \sigma(\mathbf{r})\sigma(0)\rangle = \frac{1}{4\pi r}e^{-r/\xi} \qquad \qquad \xi \sim \frac{1}{\sqrt{AC - B^2}}$$

$$\chi_{\rm B} \equiv \frac{\partial n}{\partial \mu} = T \left\langle n^2 \right\rangle_{\boldsymbol{q} \to \boldsymbol{0}} \sim \xi^{2-\eta} \qquad \eta = 0.04$$

same as high-temperature critical point

Langevin equation

$$\begin{split} \dot{x_i}(\boldsymbol{r},t) &= -\gamma_{ij} \frac{\delta F}{\delta x_j} - \int \mathrm{d}\boldsymbol{r}' \left[x_i(\boldsymbol{r}), x_j(\boldsymbol{r}') \right] \frac{\delta F}{\delta x_j(\boldsymbol{r}')} + \text{noise term} \\ \text{dissipative term} \qquad \text{reversible term} \end{split}$$

$$(x_i \equiv \sigma, n, \theta)$$

Langevin equation

$$\dot{\sigma}(\boldsymbol{r}) = -\Gamma_{\sigma\sigma} \frac{\delta F}{\delta\sigma(\boldsymbol{r})} + \Gamma_{\sigma n} \boldsymbol{\nabla}^2 \frac{\delta F}{\delta n(\boldsymbol{r})}$$

$$\dot{n}(\boldsymbol{r}) = \Gamma_{\sigma n} \boldsymbol{\nabla}^2 \frac{\delta F}{\delta \sigma(\boldsymbol{r})} + \Gamma_{nn} \boldsymbol{\nabla}^2 \frac{\delta F}{\delta n(\boldsymbol{r})} - \int d\boldsymbol{r}' \left[n(\boldsymbol{r}), \theta(\boldsymbol{r}') \right] \frac{\delta F}{\delta \theta(\boldsymbol{r}')}$$

$$\dot{\theta}(\boldsymbol{r}) = -\Gamma_{\theta\theta} \frac{\delta F}{\delta\theta(\boldsymbol{r})} - \int d\boldsymbol{r}' \left[\theta(\boldsymbol{r}), n(\boldsymbol{r}')\right] \frac{\delta F}{\delta n(\boldsymbol{r}')}$$

$$[\theta(\boldsymbol{r}), n(\boldsymbol{r}')] = \delta(\boldsymbol{r} - \boldsymbol{r}')$$

Hydrodynamic modes

$$\begin{pmatrix} i\omega - \Gamma_{\sigma\sigma}A - (\Gamma_{\sigma\sigma}a + \Gamma_{\sigma n}B)q^2 & -\Gamma_{\sigma\sigma}B - (\Gamma_{\sigma\sigma}b + \Gamma_{\sigma n}C)q^2 & 0\\ -(\Gamma_{\sigma n}A + \Gamma_{nn}B)q^2 & i\omega - (\Gamma_{\sigma n}B + \Gamma_{nn}C)q^2 & dq^2\\ -B - bq^2 & -C - cq^2 & i\omega - \Gamma_{\theta\theta}dq^2 \end{pmatrix} \begin{pmatrix} \sigma\\ n\\ \theta \end{pmatrix} = \mathbf{0}$$

$$\omega = -i\Gamma_{\sigma\sigma}A$$

relaxation mode of σ

 $\omega^2 = c_{
m s}^2 oldsymbol{q}^2$

superfluid phonon

Dynamic critical phenomena

• Speed of superfluid phonon

$$c_{\rm s} \equiv \sqrt{\frac{d}{\chi_{\rm B}}} \to 0$$
 $\chi_{\rm B} \equiv \frac{\partial n}{\partial \mu} \sim \xi^{2-\eta}$

critical slowing down

• Dynamic critical exponent $\xi^{-z} \sim c_{
m s} | oldsymbol{q} |$

$$z = 2 - \frac{\eta}{2}$$

New dynamic universality class beyond Hohenberg and Halperin's classification

Why the universality class is new?

	Superfluidity	Interplay with chiral condensate
High- μ_B QCD critical point	✓	✓
High-T QCD critical point (Model H)		
Superfluid transition of ⁴ He (Model F)	~	

 ϕ : Superfluid gap

Future heavy-ion collisions

- Dynamic critical phenomena **can** distinguish the QCD critical points. (static critical phenomena **can not**.)
- Observation of the high-density critical point

→ indirect evidence of the superfluidity in QCD.

Comparison between QCD critical points

consequence on observables?

Conclusion

• We found the new dynamic universality class beyond the conventional Hohenberg and Halperin's classification.

Universality class	High-temperature	High-density
Static	3D Ising	3D Ising NS, N. Yamamoto (2017)
Dynamic	Model H H. Fujii (2003), D. T. Son and M. A. Stephanov (2004)	New class NS, N. Yamamoto (2017)