Quarkonium as an open quantum system in the QGP

Yukinao Akamatsu (Osaka)

The 36th Heavy-Ion Cafe June 22-23, 2019@Sophia University

Collaborators: Masayuki Asakawa, Shiori Kajimoto, Takahiro Miura (Osaka), Alexander Rothkopf (Stavanger)

Phenomenology of heavy quark and quarkonium

Data show dissociation/recombination and heavy quark energy loss

Heavy quark phenomenology

- Classical transport theory for heavy quark and quarkonium
- Schrödinger equation for heavy quark-antiquark pair with a complex potential

Theory of open quantum systems can provide a more fundamental description

Open quantum system approach to heavy quarks

System (HQ) + environment (QGP)

- $1. \ \mbox{Integrating all the medium effects into effective dynamics of heavy quarks}$
- 2. Density matrix for heavy quarks

$$\rho(x,y) \equiv \langle \psi(x)\psi^*(y) \rangle, \quad \dot{\rho} = \frac{1}{i\hbar}[H,\rho] + \mathcal{L}[\rho]$$

Classical transport theory: well-defined phase space trajectories

Today's talk:

- Decoherence as a dynamical mechanism for "classicalization"
- Recent development of open quantum system, based on Lindblad theory

Decoherence

Decoherence of macroscopic superposition state in quantum mechanics

- A cat who is dead and alive in the Schrödinger's thought experiment
- Superposition state made incoherent by fluctuations of the environment
 - $\blacktriangleright\,$ e.g. At 300K, a small dust at distance 1mm loses coherence in $10^{-10} {\rm s}$

Off-diagonal part of the density matrix

Decoherence by Caldeira-Leggett master equation

[Zurek, quant-ph/0306072]

Decoherence rate depends on the distance

$$\dot{\rho}(x,y) \sim \underbrace{-F(x-y)\rho(x,y)}_{\text{decoherence}}, \qquad \underbrace{F(x-y) \geq 0}_{\text{damps off-diagonal part}}, \qquad \underbrace{F(0) = 0}_{\text{decoherence ineffective}}$$

Environment fluctuations select localized wave packet \sim "classical particle"

Decoherence rate in QGP

1. Non-relativistic limit

$$\mathcal{L}_I = \rho_Q A_0$$

2. Correlation of scalar potential A_0

$$G^{>}(x) = \langle A_0(x)A_0(0) \rangle$$

3. Heavy quark dynamics is slow compared to QGP time scales

$$D(r) = \underbrace{\int_{-\infty}^{\infty} dt}_{\text{HQ is slow}} G^{>}(x) = \underbrace{C_{F} \alpha T \int_{0}^{\infty} \frac{2dzz}{(z^{2}+1)^{2}} \frac{\sin(zrm_{D})}{zrm_{D}}}_{\text{HTL approx.}} \sim \underbrace{\frac{\gamma e^{-r^{2}/\ell_{\text{corr}}^{2}}}{\ell_{\text{corr}} \sim 1/m_{D}}}_{\ell_{\text{corr}} \sim 1/m_{D}}$$

Decoherence rate for a heavy quark [Akamatsu-Rothkopf (12)]

$$F(x-y) = \underbrace{D(0) - D(x-y)}_{\geq 0} \ge 0$$

fluctuation is different at \boldsymbol{x} and \boldsymbol{y}

► Imaginary part of HQ potential [Laine+ (07), Beraudo+ (08), Brambilla+ (08), Rothkopf+ (17,...)]

$$\underbrace{V_{\mathsf{Im}}(r) = D(r) - D(0)}_{0} \le 0$$

width from fluctuations

The decoherence rate and the imaginary part of the complex potential are related!

Complex potential

► Spectral decomposition of thermal Wilson loop on the lattice [Rothkopf+ (17, ...)]

Complex potential in several other setups

W

- in a hot wind, anisotropic plasma, magnetic field, etc
- ► Complex potential as a stochastic potential model [Akamatsu+ (12), Kajimoto+ (17)]

$$\underbrace{\langle \theta(x)\theta(x')\rangle}_{\text{hite noise field }\theta(x)} = D(\boldsymbol{x} - \boldsymbol{x}')\delta(t - t'), \quad \underbrace{H = K + V_{\mathsf{Re}} + \theta}_{\text{unitary time evolution}}$$

Application: decoherence after singlet-octet transition [Akamatsu, in progress]

A simplified model in large N_c limit ($\lambda = g^2 N_c, C_F \alpha = \lambda/8\pi$)

$$V_{\rm singlet} = -\frac{C_F \alpha}{r} \exp[-m_D r], \quad V_{\rm octet} = 0, \quad m_D^2 \sim N_c g^2 T^2 \sim \lambda T^2$$

Singlet-octet transition by an (in)elastic scattering

$$\phi_s + g^{(*)} \to \underbrace{\phi_o \to p_o}_{V_o = 0}$$

A singlet bound state + classical transport for octet [Yao-Mueller (18), Blaizot-Escobedo (18), etc] How long does it take for an octet to be regarded as classical particles?

Application: decoherence after singlet-octet transition [Akamatsu, in progress]

1. Decoherence rate

$$\frac{1}{\tau_{\mathsf{dec}}(\Delta x)} \sim D(0) - D(\Delta x) \sim C_F \alpha T \left(\frac{\Delta x}{l_{\mathsf{corr}}}\right)^2 \sim (C_F \alpha)^2 T^3 (\Delta x)^2$$

2. Wave function size r(t) after singlet-octet transition

$$r(t) \sim r_0 + vt \sim \underbrace{\frac{1}{MC_F\alpha} + C_F\alpha t}_{\text{Coulomb bound states}} \sim C_F\alpha t$$

3. Decoherence and evolution comparable at classicalization time t_c

Application: decoherence after singlet-octet transition [Akamatsu, in progress]

In terms of the density matrix

1. Octet wave function just after a singlet-octet transition

$$\phi_s(\boldsymbol{x},0) + g^{(*)} \to \phi_o(\boldsymbol{x},0)$$

2. Octet density matrix evolves

SI

$$\underbrace{\rho_o(\boldsymbol{p}, \boldsymbol{p}'; 0)}_{\text{uperposition of } ps} = \tilde{\phi}_o(\boldsymbol{p}, 0) \tilde{\phi}_o^*(\boldsymbol{p}', 0) \xrightarrow[\text{classicalization}]{\frac{\text{decoherence}}{\text{classicalization}}} \underbrace{\rho_o(\boldsymbol{p}, \boldsymbol{p}'; t_c)}_{\text{nearly diagonal}}$$

3. Distribution of a classical octet particle at t_c

$$n_o(\boldsymbol{p}, \boldsymbol{x}; t_c) = \text{Wigner transform of } \rho_o(\boldsymbol{p}, \boldsymbol{p}'; t_c)$$

Classical Boltzmann equation should use $n_o(p, x; t_c)$ for initial distribution If $t_c \sim \text{QGP}$ lifetime, classical description must fail

Recent developments in open quantum system approach to quarkonium

- 1. Lindblad equation for quarkonium
 - Any Markovian equation preserving positivity & probability must be: [Lindblad (76)]

$$\frac{d}{dt}\rho(t) = -i[H,\rho] + \sum_{n} \left(2L_n\rho L_n^{\dagger} - L_n^{\dagger}L_n\rho - \rho L_n^{\dagger}L_n\right)$$

- 2. Numerical simulation by stochastic unravelling
 - Solve Lindblad equation by generating stochastic ensemble of $\{\phi_i(t)\}$

$$\rho(t) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{|\phi_i(t)\rangle \langle \phi_i(t)|}{\underbrace{||\phi_i(t)||^2}_{\phi(t) \text{ unnormalized}}} = \text{Average of} \left[\frac{|\phi(t)\rangle \langle \phi(t)|}{||\phi(t)||^2} \right],$$

Quantum state diffusion method for solving Lindblad equation [Gisin-Percival (92)]

$$\begin{split} d\phi\rangle &= -iH|\phi(t)\rangle dt + \sum_{n} \Bigl(\underbrace{2\langle L_{n}^{\dagger}\rangle_{\phi}L_{n}}_{\text{nonlinear in }\phi} - L_{n}^{\dagger}L_{n}\Bigr)|\phi(t)\rangle dt + \sum_{n} L_{n}|\phi(t)\rangle d\xi_{n},\\ \langle d\xi_{n}d\xi_{m}^{*}\rangle &= 2\delta_{nm}dt \end{split}$$

complex noise

We will derive the Lindblad equation and compute by stochastic unravelling

Lindblad operators in various regimes

- 1. Perturbation theory in the influence functional formalism [Akamatsu (15), De Boni (17)]
 - Regime of quantum Brownian motion

$$\underbrace{\tau_E \ll \tau_{S,R}}_{\text{HQ motion and relaxation is slow}} \to g \ll 1, \quad g^3 \ln(1/g) \ll \frac{M}{T} \ll \frac{g}{\alpha^2} \sim \frac{100}{g^3}$$

 \blacktriangleright Lindblad operators describe scatterings with $\Delta p=k$ and recoil

$$L_{k} = \underbrace{\sqrt{D(k)}}_{\rightarrow \text{ rate } D(k)} \underbrace{e^{ikx/2} \left[1 + \frac{ik \cdot \nabla_{x}}{4MT}\right] e^{ikx/2}}_{\Delta p = k, \ \Delta x \sim k/MT} \underbrace{(t^{a} \otimes 1)}_{\text{color rotation}} + \text{heavy antiquark}$$

- 2. Dyson-Schwinger equation for density matrix in pNRQCD $_{[Brambilla+(17, 18)]}$
 - Weak and strong coupling regimes

$$\underbrace{1/a_0 \gg T}_{\mathcal{L}_{\text{DNRQCD} \text{ in } T} = 0} \gg E \gg m_D, \quad 1/a_0 \gg T \sim m_D \gg E$$

Lindblad op. from gluon-dissociation (weak) and inelastic scattering (strong)
 Specific form of the Lindblad operators depends on the regime

Equilibration of a single heavy quark

- QSD equation turns out to be a nonlinear stochastic Schrödinger equation
 - Constructing mixed-state density matrix with solitonic basis
- Time evolution of momentum distribution
 - \blacktriangleright Relaxation time of corresponding classical system is $M\tau_{\rm relax}\sim 300$

[Akamatsu+ (18)]

Equilibration is achieved with classical relaxation time

Quarkonium survival probability in 1d Bjorken expansion

Time evolution of occupation number of bottomonium

Effect of dissipation is important for quantitative analysis of the ground state

Summary and outlook

Is classicalization time short enough to apply kinetic models?

$$t_c \sim \frac{M^{1/2}}{C_F \alpha T^{3/2}} \sim \frac{1}{(C_F \alpha)^2 T} \sim \frac{10}{T} \quad (C_F \alpha \sim 0.3, \ T \sim M(C_F \alpha)^2)$$

- 1. For naive theorists, it is rather long because $C_F lpha \sim 0.3$
- 2. For HQ phenomenologists, it is subtle because $C_F \alpha \sim 1$
- 3. For hydro practitioners, it is short enough because $C_F \alpha \gg 1$ or $t_c \sim t_{\rm mft}$

Open system provides a more fundamental descriptions for quarkonium

- 1. Different Lindblad operators in different regimes
 - Is quarkonium really confined to one particular regime during evolution?
- 2. Nonlinear stochastic Schrödinger equation connected with microscopic theory
 - Quarkonium evolution in heavy-ion collisions [Miura+, in preparation]
- 3. Stochastic potential with color SU(3)
 - Simulate decoherence and classicalization in the octet sector [Kajimoto+, in progress]

Back Up

How is θ_c determined?

My definition of classicalization (in free space + thermal environment)

- 1. Localized compared to noise correlation $\Delta x \ll l_{\rm corr}$
- 2. Uncertainty relation $\Delta x \cdot \Delta p \sim 1$ is saturated, and keep saturated

$$\begin{split} \Delta x(t) &\sim \Delta x + \frac{\Delta p}{M} t \sim \Delta x + \frac{t}{M\Delta x}, \quad \Delta p(t) \sim \Delta p, \\ &\rightarrow t \sim M(\Delta x)^2 \sim \tau_{\mathsf{dec}}(\Delta x) \sim \frac{l_{\mathsf{corr}}^2}{D(0)(\Delta x)^2} \\ &\rightarrow \left(\frac{l_{\mathsf{corr}}^2}{MD(0)}\right)^{1/4} < \Delta x < l_{\mathsf{corr}} \end{split}$$

Then, θ_c is obtained

$$\theta_c \sim \frac{\Delta p_{\max}}{p} \sim \frac{1}{p \Delta x_{\min}}$$

Parameter choice of numerical simulations

$$H_{\text{Debye}} = \frac{p^2}{M} - \frac{\alpha}{\sqrt{x^2 + x_c^2}} e^{-m_{\text{D}}|x|},$$

$$H_{\text{Cornell}} = \frac{p^2}{M} - \frac{\alpha}{\sqrt{x^2 + x_c^2}} + \sigma x,$$

$$D(x) = \gamma \exp(-x^2/\ell_{\text{corr}}^2)$$

$$\frac{\Delta x \quad \Delta t \quad N_x \quad \gamma \quad l_{\text{corr}} \quad \alpha \quad m_{\text{D}} \quad x_c \quad \sigma}{1/M \quad 0.1M(\Delta x)^2 \quad 254} \quad T/\pi \quad 1/T \quad 0.3 \quad T \quad 1/M \quad 0.01M^2$$

Application: stochastic potential in QGP [Kajimoto+ (17)]

1. In-medium potential V and correlation function D in a Bjorken expansion

$$V(r) = -\frac{0.3}{r}e^{-Tr}, \quad D(r) = 0.3Te^{-T^2r^2}, \quad T(t) = 0.4 \text{GeV}\left(\frac{1\text{fm}}{1\text{fm}+t}\right)^{1/3}$$

2. Start from vacuum eigenstates and calculate their survival probability

$$V_{\rm vac}(r) = -\frac{0.3}{r} + (1 {\rm GeV}/{\rm fm}) \cdot r, \quad N_{\Upsilon}(t) = \langle \| \Psi_{\Upsilon}^* \cdot \Psi_{b\bar{b}}(t) \|^2 \rangle$$

Decoherence gives an additional dynamical mechanism for dissociation

Nonlinear stochastic Schrödinger equation for a heavy quark

Nonlinear stochastic Schrödnger equation

$$\begin{split} d\phi(x,t) &= \phi(x,t+dt) - \phi(x,t) \\ &\simeq \left(i\frac{\nabla^2}{2M} - \frac{1}{2}D(0)\right)\phi(x)dt + d\xi(x)\phi(x) \\ &+ \frac{dt}{||\phi(t)||^2}\int d^3y D(x-y)\phi^*(y)\phi(y)\phi(x) + \mathcal{O}(T/M) \end{split}$$

Correlation of complex noise field

$$\langle d\xi(x)d\xi^*(y)\rangle = D(x-y)dt, \quad \langle d\xi(x)d\xi(y)\rangle = \langle d\xi^*(x)d\xi^*(y)\rangle = 0$$

Density matrix for a heavy quark

$$\rho_Q(x, y, t) = \mathsf{M}\left[\frac{\phi(x, t)\phi^*(y, t)}{||\phi(t)||^2}\right]$$

What is the equilibrium solution of the Lindblad equation? How does a heavy quark approach equilibrium?

Solitonic wave function in one sampling

Wave function is localized because of the nonlinear evolution equation