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Phenomenology of heavy quark and quarkonium

Data show dissociation/recombination and heavy quark energy loss
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Heavy quark phenomenology

▶ Classical transport theory for heavy quark and quarkonium

▶ Schrödinger equation for heavy quark-antiquark pair with a complex potential

Theory of open quantum systems can provide a more fundamental description
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Open quantum system approach to heavy quarks

System (HQ) + environment (QGP)

1. Integrating all the medium effects into effective dynamics of heavy quarks

2. Density matrix for heavy quarks

ρ(x, y) ≡ ⟨ψ(x)ψ∗(y)⟩, ρ̇ =
1

iℏ
[H, ρ] + L[ρ]

Classical transport theory: well-defined phase space trajectories

?

Today’s talk:

▶ Decoherence as a dynamical mechanism for “classicalization”

▶ Recent development of open quantum system, based on Lindblad theory
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Decoherence

Decoherence of macroscopic superposition state in quantum mechanics
▶ A cat who is dead and alive in the Schrödinger’s thought experiment
▶ Superposition state made incoherent by fluctuations of the environment

▶ e.g. At 300K, a small dust at distance 1mm loses coherence in 10−10s

Off-diagonal part of the density matrix
▶ Decoherence by Caldeira-Leggett master equation

For our purposes, the effect of the last term on quantum superpositions is of great-
est interest. I shall show that it destroys quantum coherence, eliminating off-diagonal
terms responsible for quantum correlations between spatially separated pieces of the
wave packet. It is therefore responsible for the classical structure of the phase space,
as it converts superpositions into mixtures of localized wave packets which, in the
classical limit, turn into the familiar points in phase space. This effect is best illus-
trated by an example. Consider the “cat” state shown in Figure 2, where the wave
function of a particle is given by a coherent superposition of two Gaussians:
ϕ (x) = (χ+(x) + χ– (x))/21/2 and the Gaussians are

(18)

For the case of wide separation (Δx > > δ), the corresponding density matrix 
ρ(x, xʹ) = ϕ (x) ϕ*(xʹ) has four peaks: Two on the diagonal defined by x = xʹ, and two 
off the diagonal for which x and xʹ are very different (see Figure 3). Quantum coherence
is due to the off-diagonal peaks. As those peaks disappear, position emerges as an
approximate preferred basis.

The last term of Equation (17), which is proportional to (x – xʹ)2, has little effect on
the diagonal peaks. By contrast, it has a large effect on the off-diagonal peaks for which
(x – xʹ)2 is approximately the square of the separation (Δx)2. In particular, it causes the 

off-diagonal peaks to decay at the rate 

It follows that quantum coherence will disappear on a decoherence time scale (Zurek 1984).

(19)

where λdB = h/(2mkBT )–1/2 is the thermal de Broglie wavelength. For macroscopic
objects, the decoherence time τD is typically much less than the relaxation time τR = γ–1.
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Decoherence and the Transition from Quantum to Classical—Revisited

Figure 3. Evolution of the
Density Matrix for the
Schrödinger Cat State in
Figure 2 
(a)This plot shows the density
matrix for the cat state in
Figure 2 in the position repre-
sentation ρ(x, xʹ) = ϕ(x)ϕ*(x).
The peaks near the diagonal
(green) correspond to the two
possible locations of the parti-
cle. The peaks away from the
diagonal (red) are due to quan-
tum coherence. Their existence
and size demonstrate that the
particle is not in either of the
two approximate locations but
in a coherent superposition of
them. (b) Environment-induced
decoherence causes decay of
the off-diagonal terms of 
ρ(x, xʹ). Here, the density matrix
in (a) has partially decohered.
Further decoherence would
result in a density matrix with
diagonal peaks only. It can then
be regarded as a classical
probability distribution with an
equal probability of finding the
particle in either of the loca-
tions corresponding to the
Gaussian wave packets.

(a) (b)

x x
x 1 x 1

d
dt

mk T xB Dρ γ ρ τ ρ+− +− − +( ) ( ) =~ 2 2 2 1h Δ .

[Zurek, quant-ph/0306072]

▶ Decoherence rate depends on the distance

ρ̇(x, y) ∼ −F (x− y)ρ(x, y)︸ ︷︷ ︸
decoherence

, F (x− y) ≥ 0︸ ︷︷ ︸
damps off-diagonal part

, F (0) = 0︸ ︷︷ ︸
decoherence ineffective

Environment fluctuations select localized wave packet ∼ “classical particle”
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Decoherence rate in QGP

1. Non-relativistic limit
LI = ρQA0

2. Correlation of scalar potential A0

G>(x) = ⟨A0(x)A0(0)⟩

3. Heavy quark dynamics is slow compared to QGP time scales

D(r) =

∫ ∞

−∞
dt︸ ︷︷ ︸

HQ is slow

G>(x) = CFαT

∫ ∞

0

2dzz

(z2 + 1)2
sin(zrmD)

zrmD︸ ︷︷ ︸
HTL approx.

∼ γe−r2/ℓ2corr︸ ︷︷ ︸
ℓcorr ∼ 1/mD

▶ Decoherence rate for a heavy quark [Akamatsu-Rothkopf (12)]

F (x− y) = D(0)−D(x− y)︸ ︷︷ ︸
fluctuation is different at x and y

≥ 0

▶ Imaginary part of HQ potential [Laine+ (07), Beraudo+ (08), Brambilla+ (08), Rothkopf+ (17,. . . )]

VIm(r) = D(r)−D(0)︸ ︷︷ ︸
width from fluctuations

≤ 0

The decoherence rate and the imaginary part of the complex potential are related!
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Complex potential

▶ Spectral decomposition of thermal Wilson loop on the lattice [Rothkopf+ (17, . . . )]

position and width yield the values of the in-medium
potential, which are plotted as colored points in Fig. 8.
We have shifted the values of Re½V" by hand for better

readability in the top panel of Fig. 8, as indicated by the
gray arrow, and plot the statistical errors as colored bars.
The systematic errors denoted by the gray error bands have
been determined only for part of the ensembles, in
particular, however, among the newly generated ones
Nτ ¼ 60, 64, and 68. We use the variation from changing
the default model amplitude by 2 orders of magnitude as
well as discarding 10% of the small τ and/or 10% of the
large τ ≈ β data points as an estimate.
Just as in the previous analysiswe find that there appears to

exist only a gradual change in behavior of Re½V" with
increasing temperature. Due to limited statistics in the older
analysis, Nτ ¼ 64 had seemed to exhibit an anomalously
strong linear rise. This effect vanishes after increasing
statistics, and the slope at Nτ ¼ 64 now lies within the trend
of the neighboringNτ ¼ 60 andNτ ¼ 72. On the other hand,
it is now Nτ ¼ 68, which is found to show an almost a
vacuumlike linear rise. The reason for this outlier, however,
lies in the fact that the Nτ ¼ 68 simulations show extremely
long autocorrelation times inMonte Carlo time. In turn, even
after collecting more than 2100 measurements on individual
configuration, the actual statistics are reduced by around
a factor 10 to 100, making this result rather unreliable.
Interestingly this issue does not lead to an increase in the
systematic error bars compared to e.g. Nτ ¼ 64.
For the sake of completeness we continue toward

performing the Gauss-law fit by determining first the
vacuum parameters that enter into this Ansatz from the
lowest temperature result at Nτ ¼ 192. Restricting to
the region of r < 0.3 fm, we obtain

αS ¼ 0.201$ 0.004;

σ ¼ 0.186$ 0.008 GeV2

c ¼ 2.58$ 0.01 GeV; ð17Þ

where the errors are again estimated from a variation of the
upper and lower ends of the fitting range by six steps each.
These agree within errors with our previous values pub-
lished in Ref. [18]. The Debye mass parameter we find to fit
the in-medium values of Re½V" at β ¼ 7 best are compiled
in Table IV and plotted in Fig. 9. In addition we also
perform a fit to the extracted values based on Eq. (15),
which yields as best fit parameters

κ1 ¼ −0.67$ 0.06; κ2 ¼ 0.34$ 0.06 ð18Þ

and which is plotted as a solid line in Fig. 9. The
uncertainties in the κ values arise from the error in
estimating mD itself.
Let us discuss in detail the temperature dependence of

the Debye mass parameter in Fig. 9. It significantly differs

FIG. 8. Extracted values of the real (top) and imaginary parts
(bottom) of the in-medium potential (colored points) at β ¼ 7.
The values of Re½V" are shifted manually in the y direction for
better readability as indicated by the gray arrow. The values of
Im½V" are plotted individually as a grid from lowest temperature
(top left box) to highest temperature (bottom right box). The
colored error bars denote statistical uncertainty, while the gray
error band denotes systematic uncertainty.

YANNIS BURNIER and ALEXANDER ROTHKOPF PHYSICAL REVIEW D 95, 054511 (2017)

054511-10

▶ Complex potential in several other setups
▶ in a hot wind, anisotropic plasma, magnetic field, etc

▶ Complex potential as a stochastic potential model [Akamatsu+ (12), Kajimoto+ (17)]

⟨θ(x)θ(x′)⟩︸ ︷︷ ︸
white noise field θ(x)

= D(x− x′)δ(t− t′), H = K + VRe + θ︸ ︷︷ ︸
unitary time evolution
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Application: decoherence after singlet-octet transition [Akamatsu, in progress]

A simplified model in large Nc limit (λ = g2Nc, CFα = λ/8π)

Vsinglet = −CFα

r
exp[−mDr], Voctet = 0, m2

D ∼ Ncg
2T 2 ∼ λT 2

Singlet-octet transition by an (in)elastic scattering

ϕs + g(∗) → ϕo → po︸ ︷︷ ︸
Vo = 0

?

▶ A singlet bound state + classical transport for octet [Yao-Mueller (18), Blaizot-Escobedo (18), etc]

How long does it take for an octet to be regarded as classical particles?
7 / 14



Application: decoherence after singlet-octet transition [Akamatsu, in progress]

classical particlessinglet
+gluon octet

θ

How long?

1. Decoherence rate

1

τdec(∆x)
∼ D(0)−D(∆x) ∼ CFαT

(
∆x

lcorr

)2

∼ (CFα)
2T 3(∆x)2

2. Wave function size r(t) after singlet-octet transition

r(t) ∼ r0 + vt ∼ 1

MCFα
+ CFαt︸ ︷︷ ︸

Coulomb bound states

∼ CFαt

3. Decoherence and evolution comparable at classicalization time tc

τdec(r(tc)θc) ∼ tc → tc ∼
M1/2

CFαT 3/2
∼ 10

T
(CFα ∼ 0.3, T ∼M(CFα)

2)

Is tc ∼ 10/T long or short in heavy-ion collisions? 8 / 14



Application: decoherence after singlet-octet transition [Akamatsu, in progress]

In terms of the density matrix

1. Octet wave function just after a singlet-octet transition

ϕs(x, 0) + g(∗) → ϕo(x, 0)

2. Octet density matrix evolves

ρo(p,p
′; 0)︸ ︷︷ ︸

superposition of ps

= ϕ̃o(p, 0)ϕ̃
∗
o(p

′, 0)
decoherence−−−−−−−−→

classicalization
ρo(p,p

′; tc)︸ ︷︷ ︸
nearly diagonal

3. Distribution of a classical octet particle at tc

no(p,x; tc) = Wigner transform of ρo(p,p
′; tc)

Classical Boltzmann equation should use no(p,x; tc) for initial distribution
If tc ∼ QGP lifetime, classical description must fail
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Recent developments in open quantum system approach to quarkonium

1. Lindblad equation for quarkonium
▶ Any Markovian equation preserving positivity & probability must be: [Lindblad (76)]

d

dt
ρ(t) = −i[H, ρ] +

∑
n

(
2LnρL

†
n − L†

nLnρ− ρL†
nLn

)
2. Numerical simulation by stochastic unravelling

▶ Solve Lindblad equation by generating stochastic ensemble of {ϕi(t)}

ρ(t) = lim
N→∞

1

N

N∑
i=1

|ϕi(t)⟩⟨ϕi(t)|
||ϕi(t)||2︸ ︷︷ ︸

ϕ(t) unnormalized

= Average of

[
|ϕ(t)⟩⟨ϕ(t)|
||ϕ(t)||2

]
,

▶ Quantum state diffusion method for solving Lindblad equation [Gisin-Percival (92)]

|dϕ⟩ = −iH|ϕ(t)⟩dt+
∑
n

(
2⟨L†

n⟩ϕLn︸ ︷︷ ︸
nonlinear in ϕ

−L†
nLn

)
|ϕ(t)⟩dt+

∑
n

Ln|ϕ(t)⟩dξn,

⟨dξndξ∗m⟩︸ ︷︷ ︸
complex noise

= 2δnmdt

We will derive the Lindblad equation and compute by stochastic unravelling
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Lindblad operators in various regimes

1. Perturbation theory in the influence functional formalism [Akamatsu (15), De Boni (17)]

▶ Regime of quantum Brownian motion

τE ≪ τS,R︸ ︷︷ ︸
HQ motion and relaxation is slow

→ g ≪ 1, g3 ln(1/g) ≪ M

T
≪ g

α2
∼ 100

g3

▶ Lindblad operators describe scatterings with ∆p = k and recoil

Lk =
√

D(k)︸ ︷︷ ︸
→ rate D(k)

eikx/2
[
1 +

ik · ∇x

4MT

]
eikx/2︸ ︷︷ ︸

∆p = k, ∆x ∼ k/MT

(ta ⊗ 1)︸ ︷︷ ︸
color rotation

+heavy antiquark

2. Dyson-Schwinger equation for density matrix in pNRQCD [Brambilla+ (17, 18)]

▶ Weak and strong coupling regimes

1/a0 ≫ T︸ ︷︷ ︸
LpNRQCD in T = 0

≫ E ≫ mD, 1/a0 ≫ T ∼ mD ≫ E

▶ Lindblad op. from gluon-dissociation (weak) and inelastic scattering (strong)

Specific form of the Lindblad operators depends on the regime
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Equilibration of a single heavy quark

▶ QSD equation turns out to be a nonlinear stochastic Schrödinger equation
▶ Constructing mixed-state density matrix with solitonic basis

▶ Time evolution of momentum distribution
▶ Relaxation time of corresponding classical system is Mτrelax ∼ 300
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[Akamatsu+ (18)]

Equilibration is achieved with classical relaxation time
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Quarkonium survival probability in 1d Bjorken expansion

▶ Time evolution of occupation number of bottomonium

Bound state in Cornell potential

QSD in Bjorken expanding QGP
with

HQ potential = Debye screened

Projection to Cornell bound states

[Miura+, in preparation]

Effect of dissipation is important for quantitative analysis of the ground state
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Summary and outlook

Is classicalization time short enough to apply kinetic models?

tc ∼
M1/2

CFαT 3/2
∼ 1

(CFα)2T
∼ 10

T
(CFα ∼ 0.3, T ∼M(CFα)

2)

1. For naive theorists, it is rather long because CFα ∼ 0.3

2. For HQ phenomenologists, it is subtle because CFα ∼ 1

3. For hydro practitioners, it is short enough because CFα≫ 1 or tc ∼ tmft

Open system provides a more fundamental descriptions for quarkonium

1. Different Lindblad operators in different regimes
▶ Is quarkonium really confined to one particular regime during evolution?

2. Nonlinear stochastic Schrödinger equation connected with microscopic theory
▶ Quarkonium evolution in heavy-ion collisions [Miura+, in preparation]

3. Stochastic potential with color SU(3)
▶ Simulate decoherence and classicalization in the octet sector [Kajimoto+, in progress]
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Back Up
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How is θc determined?

My definition of classicalization (in free space + thermal environment)

1. Localized compared to noise correlation ∆x≪ lcorr

2. Uncertainty relation ∆x ·∆p ∼ 1 is saturated, and keep saturated

∆x(t) ∼ ∆x+
∆p

M
t ∼ ∆x+

t

M∆x
, ∆p(t) ∼ ∆p,

→t ∼M(∆x)2 ∼ τdec(∆x) ∼
l2corr

D(0)(∆x)2

→
(

l2corr
MD(0)

)1/4

< ∆x < lcorr

Then, θc is obtained

θc ∼
∆pmax

p
∼ 1

p∆xmin
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Parameter choice of numerical simulations

HDebye =
p2

M
− α√

x2 + x2c
e−mD|x|,

HCornell =
p2

M
− α√

x2 + x2c
+ σx,

D(x) = γ exp(−x2/ℓ2corr)

∆x ∆t Nx γ lcorr α mD xc σ
1/M 0.1M(∆x)2 254 T/π 1/T 0.3 T 1/M 0.01M2
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Application: stochastic potential in QGP [Kajimoto+ (17)]

1. In-medium potential V and correlation function D in a Bjorken expansion

V (r) = −0.3

r
e−Tr, D(r) = 0.3Te−T 2r2 , T (t) = 0.4GeV

(
1fm

1fm+ t

)1/3

2. Start from vacuum eigenstates and calculate their survival probability

Vvac(r) = −0.3

r
+ (1GeV/fm) · r, NΥ(t) = ⟨∥Ψ∗

Υ ·Ψbb̄(t)∥2⟩
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Decoherence gives an additional dynamical mechanism for dissociation
18 / 14



Nonlinear stochastic Schrödinger equation for a heavy quark

▶ Nonlinear stochastic Schrödnger equation

dϕ(x, t) = ϕ(x, t+ dt)− ϕ(x, t)

≃
(
i
∇2

2M
− 1

2
D(0)

)
ϕ(x)dt+ dξ(x)ϕ(x)

+
dt

||ϕ(t)||2

∫
d3yD(x− y)ϕ∗(y)ϕ(y)ϕ(x) +O(T/M)

▶ Correlation of complex noise field

⟨dξ(x)dξ∗(y)⟩ = D(x− y)dt, ⟨dξ(x)dξ(y)⟩ = ⟨dξ∗(x)dξ∗(y)⟩ = 0

▶ Density matrix for a heavy quark

ρQ(x, y, t) = M

[
ϕ(x, t)ϕ∗(y, t)

||ϕ(t)||2

]

What is the equilibrium solution of the Lindblad equation?
How does a heavy quark approach equilibrium?
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Solitonic wave function in one sampling
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Wave function is localized because of the nonlinear evolution equation
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