Quarkonium as an open quantum system in the QGP

Yukinao Akamatsu (Osaka)

The 36th Heavy-lon Cafe June 22-23, 2019@Sophia University

Collaborators:
Masayuki Asakawa, Shiori Kajimoto, Takahiro Miura (Osaka), Alexander Rothkopf (Stavanger)

Phenomenology of heavy quark and quarkonium

Data show dissociation/recombination and heavy quark energy loss

Heavy quark phenomenology

- Classical transport theory for heavy quark and quarkonium
- Schrödinger equation for heavy quark-antiquark pair with a complex potential

Theory of open quantum systems can provide a more fundamental description

Open quantum system approach to heavy quarks
System (HQ) + environment (QGP)

1. Integrating all the medium effects into effective dynamics of heavy quarks
2. Density matrix for heavy quarks

$$
\rho(x, y) \equiv\left\langle\psi(x) \psi^{*}(y)\right\rangle, \quad \dot{\rho}=\frac{1}{i \hbar}[H, \rho]+\mathcal{L}[\rho]
$$

Classical transport theory: well-defined phase space trajectories

Today's talk:

- Decoherence as a dynamical mechanism for "classicalization"
- Recent development of open quantum system, based on Lindblad theory

Decoherence

Decoherence of macroscopic superposition state in quantum mechanics

- A cat who is dead and alive in the Schrödinger's thought experiment
- Superposition state made incoherent by fluctuations of the environment
- e.g. At 300 K , a small dust at distance 1 mm loses coherence in 10^{-10} s

Off-diagonal part of the density matrix

- Decoherence by Caldeira-Leggett master equation
(a)

(b)

- Decoherence rate depends on the distance

$$
\dot{\rho}(x, y) \sim \underbrace{-F(x-y) \rho(x, y)}_{\text {decoherence }}
$$

$$
\underbrace{F(x-y) \geq 0}_{\text {damps off-diagonal part }}
$$

$$
\underbrace{F(0)=0}
$$

decoherence ineffective
Environment fluctuations select localized wave packet \sim "classical particle"

Decoherence rate in QGP

1. Non-relativistic limit

$$
\mathcal{L}_{I}=\rho_{Q} A_{0}
$$

2. Correlation of scalar potential A_{0}

$$
G^{>}(x)=\left\langle A_{0}(x) A_{0}(0)\right\rangle
$$

3. Heavy quark dynamics is slow compared to QGP time scales

$$
D(r)=\underbrace{\int_{-\infty}^{\infty} d t}_{\text {HQ is slow }} G^{>}(x)=\underbrace{C_{F} \alpha T \int_{0}^{\infty} \frac{2 d z z}{\left(z^{2}+1\right)^{2}} \frac{\sin \left(z r m_{D}\right)}{z r m_{D}}}_{\text {HTL approx. }} \sim \underbrace{\gamma e^{-r^{2} / \ell_{\text {corr }}^{2}}}_{\ell_{\text {corr }} \sim 1 / m_{D}}
$$

- Decoherence rate for a heavy quark [Akamatsu-Rothkopf (12)]

$$
F(x-y)=\underbrace{D(0)-D(x-y)}_{\text {fluctuation is different at } x \text { and } y} \geq 0
$$

- Imaginary part of HQ potential [Laine+ (07), Beraudo+ (08), Brambilla+ (08), Rothkopf+ (17, ...)]

$$
\underbrace{V_{\operatorname{Im}}(r)=D(r)-D(0)}_{\text {width from fluctuations }} \leq 0
$$

The decoherence rate and the imaginary part of the complex potential are related!

Complex potential

- Spectral decomposition of thermal Wilson loop on the lattice [Rothoopf ($17, \ldots$,]

- Complex potential in several other setups
- in a hot wind, anisotropic plasma, magnetic field, etc
- Complex potential as a stochastic potential model ${ }_{[\text {Akamatsu }+(12) \text {, Kajimotot (} 1771]}$

$$
\underbrace{\left\langle\theta(x) \theta\left(x^{\prime}\right)\right\rangle}_{\text {Uhite noise field } \theta(x)}=D\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \delta\left(t-t^{\prime}\right), \underbrace{H=K+V_{\mathrm{Re}}+\theta}_{\text {unitary time evolution }}
$$

Application: decoherence after singlet-octet transition [Alamastu, in poogeses]
A simplified model in large N_{c} limit $\left(\lambda=g^{2} N_{c}, C_{F} \alpha=\lambda / 8 \pi\right)$

$$
V_{\text {singlet }}=-\frac{C_{F} \alpha}{r} \exp \left[-m_{D} r\right], \quad V_{\text {octet }}=0, \quad m_{D}^{2} \sim N_{c} g^{2} T^{2} \sim \lambda T^{2}
$$

Singlet-octet transition by an (in)elastic scattering

$$
\phi_{s}+g^{(*)} \rightarrow \underbrace{\phi_{o} \rightarrow p_{o}}_{V_{o}=0}
$$

- A singlet bound state + classical transport for octet (rao-Muelerer (18), Blaizot-Escobedo (18), etc] How long does it take for an octet to be regarded as classical particles?

Application: decoherence after singlet-octet transition [Alamastu, in poogeses]

1. Decoherence rate

$$
\frac{1}{\tau_{\mathrm{dec}}(\Delta x)} \sim D(0)-D(\Delta x) \sim C_{F} \alpha T\left(\frac{\Delta x}{l_{\mathrm{corr}}}\right)^{2} \sim\left(C_{F} \alpha\right)^{2} T^{3}(\Delta x)^{2}
$$

2. Wave function size $r(t)$ after singlet-octet transition

$$
r(t) \sim r_{0}+v t \sim \underbrace{\frac{1}{M C_{F} \alpha}+C_{F} \alpha t}_{\text {Coulomb bound states }} \sim C_{F} \alpha t
$$

3. Decoherence and evolution comparable at classicalization time t_{c}

$$
\tau_{\mathrm{dec}}\left(r\left(t_{c}\right) \theta_{c}\right) \sim t_{c} \rightarrow t_{c} \sim \frac{M^{1 / 2}}{C_{F} \alpha T^{3 / 2}} \sim \frac{10}{T} \quad\left(C_{F} \alpha \sim 0.3, T \sim M\left(C_{F} \alpha\right)^{2}\right)
$$

$$
\text { Is } t_{c} \sim 10 / T \text { long or short in heavy-ion collisions? }
$$

Application: decoherence after singlet-octet transition [Alamass, in progeses]

In terms of the density matrix

1. Octet wave function just after a singlet-octet transition

$$
\phi_{s}(\boldsymbol{x}, 0)+g^{(*)} \rightarrow \phi_{o}(\boldsymbol{x}, 0)
$$

2. Octet density matrix evolves

$$
\underbrace{\rho_{o}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime} ; 0\right)}_{\text {superposition of } p s}=\tilde{\phi}_{o}(\boldsymbol{p}, 0) \tilde{\phi}_{o}^{*}\left(\boldsymbol{p}^{\prime}, 0\right) \underbrace{\text { decoherence }}_{\text {classicalization }} \underbrace{\rho_{o}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime} ; t_{c}\right)}_{\text {nearly diagonal }}
$$

3. Distribution of a classical octet particle at t_{c}

$$
n_{o}\left(\boldsymbol{p}, \boldsymbol{x} ; t_{c}\right)=\text { Wigner transform of } \rho_{o}\left(\boldsymbol{p}, \boldsymbol{p}^{\prime} ; t_{c}\right)
$$

Classical Boltzmann equation should use $n_{o}\left(\boldsymbol{p}, \boldsymbol{x} ; t_{c}\right)$ for initial distribution If $t_{c} \sim$ QGP lifetime, classical description must fail

Recent developments in open quantum system approach to quarkonium

1. Lindblad equation for quarkonium

- Any Markovian equation preserving positivity \& probability must be: [Lindblad (76)]

$$
\frac{d}{d t} \rho(t)=-i[H, \rho]+\sum_{n}\left(2 L_{n} \rho L_{n}^{\dagger}-L_{n}^{\dagger} L_{n} \rho-\rho L_{n}^{\dagger} L_{n}\right)
$$

2. Numerical simulation by stochastic unravelling

- Solve Lindblad equation by generating stochastic ensemble of $\left\{\phi_{i}(t)\right\}$

$$
\rho(t)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{\left|\phi_{i}(t)\right\rangle\left\langle\phi_{i}(t)\right|}{\underbrace{\left\|\phi_{i}(t)\right\|^{2}}_{\phi(t) \text { unnormalized }}}=\text { Average of }\left[\frac{|\phi(t)\rangle\langle\phi(t)|}{\|\phi(t)\|^{2}}\right]
$$

- Quantum state diffusion method for solving Lindblad equation [Gisin-Percival (92)]

$$
\begin{aligned}
& |d \phi\rangle=-i H|\phi(t)\rangle d t+\sum_{n}(\underbrace{2\left\langle L_{n}^{\dagger}\right\rangle_{\phi} L_{n}}_{\text {nonlinear in } \phi}-L_{n}^{\dagger} L_{n})|\phi(t)\rangle d t+\sum_{n} L_{n}|\phi(t)\rangle d \xi_{n} \\
& \underbrace{\left\langle d \xi_{n} d \xi_{m}^{*}\right\rangle}_{\text {complex noise }}=2 \delta_{n m} d t
\end{aligned}
$$

We will derive the Lindblad equation and compute by stochastic unravelling

Lindblad operators in various regimes

1. Perturbation theory in the influence functional formalism [Akamatsu (15), De Boni (177]

- Regime of quantum Brownian motion

$$
\underbrace{\tau_{E} \ll \tau_{S, R}} \quad \rightarrow \quad g \ll 1, \quad g^{3} \ln (1 / g) \ll \frac{M}{T} \ll \frac{g}{\alpha^{2}} \sim \frac{100}{g^{3}}
$$

[^0]- Lindblad operators describe scatterings with $\Delta p=k$ and recoil

$$
L_{k}=\underbrace{\sqrt{D(k)}}_{\rightarrow \text { rate } D(k)} \underbrace{e^{i k x / 2}\left[1+\frac{i k \cdot \nabla_{x}}{4 M T}\right] e^{i k x / 2}}_{\Delta p=k, \Delta x \sim k / M T} \underbrace{\left(t^{a} \otimes 1\right)}_{\text {color rotation }} \text { +heavy antiquark }
$$

2. Dyson-Schwinger equation for density matrix in pNRQCD ${ }_{[B r a m b i l l a+(17, ~ 18)]}$

- Weak and strong coupling regimes

$$
\underbrace{1 / a_{0} \gg T}_{\mathcal{L}_{\text {PNRQCD }} \text { in } T=0} \gg E \gg m_{D}, \quad 1 / a_{0} \gg T \sim m_{D} \gg E
$$

- Lindblad op. from gluon-dissociation (weak) and inelastic scattering (strong)

Specific form of the Lindblad operators depends on the regime

Equilibration of a single heavy quark

- QSD equation turns out to be a nonlinear stochastic Schrödinger equation
- Constructing mixed-state density matrix with solitonic basis
- Time evolution of momentum distribution
- Relaxation time of corresponding classical system is $M \tau_{\text {relax }} \sim 300$
[Akamatsu + (18)]

Equilibration is achieved with classical relaxation time

Quarkonium survival probability in 1d Bjorken expansion

- Time evolution of occupation number of bottomonium

Effect of dissipation is important for quantitative analysis of the ground state

Summary and outlook

Is classicalization time short enough to apply kinetic models?

$$
t_{c} \sim \frac{M^{1 / 2}}{C_{F} \alpha T^{3 / 2}} \sim \frac{1}{\left(C_{F} \alpha\right)^{2} T} \sim \frac{10}{T} \quad\left(C_{F} \alpha \sim 0.3, T \sim M\left(C_{F} \alpha\right)^{2}\right)
$$

1. For naive theorists, it is rather long because $C_{F} \alpha \sim 0.3$
2. For HQ phenomenologists, it is subtle because $C_{F} \alpha \sim 1$
3. For hydro practitioners, it is short enough because $C_{F} \alpha \gg 1$ or $t_{c} \sim t_{\mathrm{mft}}$

Open system provides a more fundamental descriptions for quarkonium

1. Different Lindblad operators in different regimes

- Is quarkonium really confined to one particular regime during evolution?

2. Nonlinear stochastic Schrödinger equation connected with microscopic theory

- Quarkonium evolution in heavy-ion collisions [Miurat, in preparation]

3. Stochastic potential with color $\operatorname{SU}(3)$

- Simulate decoherence and classicalization in the octet sector [Kajimoto+, in progress]

Back Up

How is θ_{c} determined?

My definition of classicalization (in free space + thermal environment)

1. Localized compared to noise correlation $\Delta x \ll l_{\text {corr }}$
2. Uncertainty relation $\Delta x \cdot \Delta p \sim 1$ is saturated, and keep saturated

$$
\begin{aligned}
& \Delta x(t) \sim \Delta x+\frac{\Delta p}{M} t \sim \Delta x+\frac{t}{M \Delta x}, \quad \Delta p(t) \sim \Delta p \\
& \quad \rightarrow t \sim M(\Delta x)^{2} \sim \tau_{\text {dec }}(\Delta x) \sim \frac{l_{\text {corr }}^{2}}{D(0)(\Delta x)^{2}} \\
& \quad \rightarrow\left(\frac{l_{\text {corr }}^{2}}{M D(0)}\right)^{1 / 4}<\Delta x<l_{\text {corr }}
\end{aligned}
$$

Then, θ_{c} is obtained

$$
\theta_{c} \sim \frac{\Delta p_{\max }}{p} \sim \frac{1}{p \Delta x_{\min }}
$$

Parameter choice of numerical simulations

$$
\begin{aligned}
H_{\text {Debye }} & =\frac{p^{2}}{M}-\frac{\alpha}{\sqrt{x^{2}+x_{\mathrm{c}}^{2}}} \mathrm{e}^{-m_{\mathrm{D}}|x|} \\
H_{\text {Cornell }} & =\frac{p^{2}}{M}-\frac{\alpha}{\sqrt{x^{2}+x_{\mathrm{c}}^{2}}}+\sigma x, \\
D(x) & =\gamma \exp \left(-x^{2} / \ell_{\text {corr }}^{2}\right)
\end{aligned}
$$

Δx	Δt	N_{x}	γ	$l_{\text {corr }}$	α	m_{D}	x_{c}	σ
$1 / M$	$0.1 M(\Delta x)^{2}$	254	T / π	$1 / T$	0.3	T	$1 / M$	$0.01 M^{2}$

Application: stochastic potential in QGP ${ }_{[\text {Kjejimotot }(17)]}$

1. In-medium potential V and correlation function D in a Bjorken expansion

$$
V(r)=-\frac{0.3}{r} e^{-T r}, \quad D(r)=0.3 T e^{-T^{2} r^{2}}, \quad T(t)=0.4 \mathrm{GeV}\left(\frac{1 \mathrm{fm}}{1 \mathrm{fm}+t}\right)^{1 / 3}
$$

2. Start from vacuum eigenstates and calculate their survival probability

$$
V_{\mathrm{vac}}(r)=-\frac{0.3}{r}+(1 \mathrm{GeV} / \mathrm{fm}) \cdot r, \quad N_{\Upsilon}(t)=\left\langle\left\|\Psi_{\Upsilon}^{*} \cdot \Psi_{b \bar{b}}(t)\right\|^{2}\right\rangle
$$

Decoherence gives an additional dynamical mechanism for dissociation

Nonlinear stochastic Schrödinger equation for a heavy quark

- Nonlinear stochastic Schrödnger equation

$$
\begin{aligned}
& d \phi(x, t)=\phi(x, t+d t)-\phi(x, t) \\
& \simeq\left(i \frac{\nabla^{2}}{2 M}-\frac{1}{2} D(0)\right) \phi(x) d t+d \xi(x) \phi(x) \\
& \quad+\frac{d t}{\|\phi(t)\|^{2}} \int d^{3} y D(x-y) \phi^{*}(y) \phi(y) \phi(x)+\mathcal{O}(T / M)
\end{aligned}
$$

- Correlation of complex noise field

$$
\left\langle d \xi(x) d \xi^{*}(y)\right\rangle=D(x-y) d t, \quad\langle d \xi(x) d \xi(y)\rangle=\left\langle d \xi^{*}(x) d \xi^{*}(y)\right\rangle=0
$$

- Density matrix for a heavy quark

$$
\rho_{Q}(x, y, t)=\mathrm{M}\left[\frac{\phi(x, t) \phi^{*}(y, t)}{\|\phi(t)\|^{2}}\right]
$$

What is the equilibrium solution of the Lindblad equation? How does a heavy quark approach equilibrium?

Solitonic wave function in one sampling

Wave function is localized because of the nonlinear evolution equation

[^0]: HQ motion and relaxation is slow

