

Kenta Shigaki

(Hiroshima University 🌒 広 島 大 学)

Extended 36th Heavy Ion Cafe 22–23 June 2019

Sophia University

Presentation Outline

- multiple physics motivations
- high mass results
- intermediate mass results and challenges
- Iow mass results and outlook
 - LHC (w.r.t. RHIC)
 - with my personal belief in dimuons at LHC (ALICE)
 - J-PARC E16
- summary and concluding remarks

Multiple Physics Motivations

- high mass $(J/\psi$ and above)
 - color Debye screening
 - sequential melting thermometer
 - heavy quark thermalization
- intermediate mass (between ϕ and J/ ψ)
 - heavy flavor production
 - thermal radiation
- Iow mass (up to φ)
 - chiral symmetry restoration
 - thermal radiation

famous though infamous channel

- yes, di-leptons are clean and attractive
 - famous penetrating probe
 - physics already discussed by M. Kitazawa
- but, di-leptons are challenging
 - infamously rare signal; high BG; technical issues
- only cases worth the challenge (personal view):
 - low mass low $p_{\rm T}$ physics to look into early stage
 - high mass vector mesons in clean decay channels
 - → T. Gunji, heavy flavor
 - (good) substitute for real photons
 - ref. T. Sakaguchi, photons

Ultra Summary of High Mass Results

• J/ψ suppressed, regenerated and collective Y suppressed, less regenerated or collective

Low/Inter. Mass Dielectrons at ALICE

leading effort by Taku Gunji

former low mass dielectron PAG co-coordinator

ALI-PUB-150212

Intermediate Mass Physics

charm and beauty production

- yet with large model dependence

Dileptons and Chiral Symmetry Restoration at LHC etc. - K.Shigaki

Low Mass Low p_T Physics

- chiral symmetry restoration
- "observed" in finite density regime
 - $-\phi$, ω in nuclei via *p*-A (KEK E325)
 - though apparent contradiction to CB-ELSA/TAPS and CLAS-G7
 - π in nuclei via (*d*, ³He)

no evidence in high temperature regime yet

dilepton measurements very challenging

Dileptons and Chiral Symmetry Restoration at LHC etc. - K.Shigaki

7/26

Low Mass Dimuons at ALICE

- clean φ and ω mass spectra in central Pb+Pb
- ρ depending on charm "background"
 - charm interesting by itself
- key: low p_T reach

Upgrade Schedule in 2019–2020

detector components already removed

Dileptons and Chiral Symmetry Restoration at LHC etc. - K.Shigaki

ALICE Upgrade Strategies

1st – high p_T phenomena (jets), heavy flavors

✓ × 2-3 speeding up, new detectors; LS1 2013-2014

- 2^{nd} low/mid p_T phenomena, e.g. c, b ≥ 0 GeV/c
 - \times 100 speeding up, new detectors; <u>LS2 2019-2020</u>
 - new vertex trackers
 - new TPC end cap chamber (Tokyo)
 - new muon forward tracker (Hiroshima + Nara, Nagasaki)
 - new integrated online/offline handling (Nagasaki + JAEA)
- 3rd t.b.d.: (further) forward physics?
 - new detectors; LS3? 2024?
 - new forward calorimeter (Tsukuba + Nara, Hiroshima) ?

Major Upgrades for Run 3 (2021–)

- new inner tracking system
 - 7 layers of MAPS silicon pixel detectors
 - precise measurement of displaced vertices
 - to separate charm/beauty mesons
- new TPC readout chambers
 - GEM technology with no gating grid
 - ~100 times higher data taking rate (50 kHz in Pb-Pb)
 - continuous readout without triggering
- Muon Forward Tracker (MFT)
- integrated online/offline data handling (0²)

Aufheben of e + µ Measurements

two interesting regimes of quark-gluon phase
– exploration on QCD phase diagram

new opportunity via muons at LHC (and above)

- <u>not too forward</u> for "central" physics
- technically *forward enough* for muon measurement

Muon Measurement at RHIC-PHENIX

- muon arms: 1.2 < |η| < 2.4</p>
 - shoulder of central rapidity plateau
- minimum $p_{\rm T} \sim 1.0 1.5 \, {\rm GeV}/c$

Muon Measurement at LHC-ALICE

- muon arm: 2.5 < |η| < 4.0</p>
- MFT: 2.5 < |η| < 3.6</p>
 - shoulder of central rapidity plateau (similar to PHENIX)
- minimum $p_{\rm T} \sim 0.5 \, {\rm GeV/c}$

Muon Forward Tracker (2021-)

Muon Forward Tracker Design

- -z = 460 - 768 mm

0.4 m² of MAPS silicon pixel sensors

precise vertexing capability for forward muons Pb-Pb ~50 kHz, p-p ~200 kHz

MFT Structure and Elements

chip (936)/ladder (280)/zone (80)/half plane (20) /half disk (10) + PS unit (2)/half MFT (2)/MFT (1)

Muon Forward Tracker Milestones

tight but staying on track in this crucial stage

Mar-19	2015	2016	2017	2018	2019	2020
Ladder EDR (30/9/16)		\odot				
Ladder PRR (18/10/17)			\bigcirc		i	
FPC production end (05/18)					\odot	
Ladder prod. end (9/19)						
Disk EDR (1/2/17)			\bigcirc			
Disk PRR (30/1/18)			(<u>;</u>	i	
Disk prod., assembly, metrology (5/19)						
Cone and barrel EDR (20/6/17)			\odot		1	
Cone and barrel PRR (23/5/18)				\odot	1	
Cone assembly and qualific. end (5/19)						
Barrel structure construction end (03/19)						
Cone integrated inside barrel (6/19)					\odot	
RO EDR (13/7/17)			\odot			
RO PRR (29/11/18)				\bigcirc	i	5 months
MFT commissioned on surface (11/19)					· · · ·	
MFT installation during LS2 (3/20)						

Muon Forward Tracker Control System

- hardware control, finite state machine, interlock
- new architectures in ALICE run 3
 - e.g. gigabit transfer slow control adapter (GBT-SCA)
- MFT (Hiroshima/CERN) leading ALICE development

Full Scale DCS Test Bench at Hiroshima

広島大学

Dileptons and Chiral Symmetry Restoration at LHC etc. - K.Shigaki

21/26

MFT Physics Goals at a Glance

separated open heavy flavors

- $D \rightarrow \mu \qquad p_T > 0-1 \text{ GeV/c}$
- $B \rightarrow \mu$ $p_T > 2 \text{ GeV/c}$
 - $J/\psi p_T > 0 \text{ GeV/c}$
- separated quarkonia

– prompt/secondary J/ ψ , ψ (2S), Y(1S/2S/3S)

Dileptons and Chiral Symmetry Restoration at LHC etc. - K.Shigaki

Mass Modification Detectability

- evaluation in progress
 - based on simple 2 peak model

Takehito Kondo

similar to KEK E325 analysis and J-PARC E16 simulation

p+A and A+A to be attacked soon

J-PARC E16

successor of KEK E325

- ρ +A $\rightarrow \rho/\omega/\phi \rightarrow e^+e^-$
- not just statistics,
 - but more systematics
- pilot run in early 2020
 - 8 partial modules
- run 1 in early 2021 (?)
 - 8 complete modules
 - plan to collect 15 k ϕ 's
- run 2 in 2022 (?)
 - all 26 modules

E16 Finally to Materialize

- BNL, Hiroshima, JAEA, JASRI, KEK, Kyoto, NIAS, Osaka, RIKEN, Tohoku, Tokyo, Tsukuba
- graduate student joining from Hiroshima

Takehito Kondo

Dileptons and Chiral Symmetry Restoration at LHC etc. - K.Shigaki

Summary and Concluding Remarks

- dileptons to probe rich physics
 - famous penetrating probe of early stage
 - though technically challenging, even more than expected
- Iow mass low p_T physics yet to be attacked
 - chiral symmetry restoration
 - thermal radiation from initial stage
- new opportunity in dimuons at LHC (and above)
 - along with beloved dielectrons
- ALICE run 3 (2021–) !
- J-PARC E16 in another (density) direction

