allow allow

Photon and CGC

ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL

Kenji Fukushima (Univ. of Tokyo)

The 36th Heavy Ion Cafe

1

Photon from Early Dynamics

Alexander and a step and the state of the step and the state of the state of the state of the state of the state

Photon from Saturated Gluons (conventional)

S. Benic, K. Fukushima, O. Garcia-Montero, R. Venugopalan

JHEP171, 115 (2017) [arXiv:1609.09424 [hep-ph]]

Physics Letters B791, 11-16 (2019) [arXiv:1807.03806 [hep-ph]]

Photon from Strong Magnetic Field (speculative)

K. Fukushima, X.-G. Huang, M. Ruggieri

We launched a project one year ago...but we were all quite busy and no result yet...

I — Conventional Part

ALIAN ALIAN

ALINE AL

 $q\bar{q} \rightarrow gg \rightarrow \text{jets} \rightarrow \gamma$

We can perturbatively calculate direct photons and want to drop fragmentation photons (but calculable in principle)

LO Photon in pA

ALINE ALINE

$$\frac{1}{A_{\perp}} \frac{d\sigma^{q \to q\gamma}}{d^2 \mathbf{k}_{\perp}} = \frac{2\alpha_e}{(2\pi)^4 \mathbf{k}_{\perp}^2} \int_0^1 dz \frac{1 + (1 - z)^2}{z} \int d^2 \mathbf{l}_{\perp} \frac{\mathbf{l}_{\perp}^2 C(\mathbf{l}_{\perp})}{(\mathbf{l}_{\perp} - \mathbf{k}_{\perp}/z)^2}$$

$$C(\boldsymbol{l}_{\perp}) \equiv \int d^2 \boldsymbol{x}_{\perp} e^{i\boldsymbol{l}_{\perp} \cdot \boldsymbol{x}_{\perp}} e^{-B_2(\boldsymbol{x}_{\perp})} = \int d^2 \boldsymbol{x}_{\perp} e^{i\boldsymbol{l}_{\perp} \cdot \boldsymbol{x}_{\perp}} \left\langle U(0)U^{\dagger}(\boldsymbol{x}_{\perp})\right\rangle_{\rho}$$
$$B_2(\boldsymbol{x}_{\perp} - \boldsymbol{y}_{\perp}) \equiv Q_s^2 \int d^2 \boldsymbol{z}_{\perp} [G_0(\boldsymbol{x}_{\perp} - \boldsymbol{z}_{\perp}) - G_0(\boldsymbol{y}_{\perp} - \boldsymbol{z}_{\perp})]^2$$

LO Photon in pA

ĨŎŦĊŦĔŧĔĨĿŦĊŦĔŧĔĨĿŦĊŦĔŧĔĨĿŦĊŦĔŧĔĨĿŦĊŦĔŧĔĨĿĔŧĔĨĿŦĊŦĔŧĔĨĿŦĊŦĔŧĔĨĿŦĊŦĔŧĔĨĿŦĊŦĔŧĔĨĿŦĊŦĔŧŔ

Ducloue-Lappi-Mantysaari (2017)

Gelis-Jalilian-Marian formula + isolation cut

Dense — Wilson lines : MV model + rcBK Dilute — PDF : CTEQ6 Rapidity Dependence

NLO Photon in pA

aller aller

LO vs. NLO with CGC

ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDA

- **LO:** $\sim \alpha_e n_q \langle UU^{\dagger} \rangle$
- **NLO:** $\sim \alpha_e \langle (g\rho_p)^2 \rangle \langle UU^{\dagger}UU^{\dagger} \rangle$

$$(g\rho_p)^4 < n_q < (g\rho_p)^2$$

NLO is overwhelming (i.e., saturation dominant) but the pA (dilute) expansion still works

Systematic calculations feasible Not small corrections but dominant at high energies

Diagrams (schematic)

ALINE ALINE

This is only a schematic picture, and the reality involves many other diagrams

LO vs. NLO with CGC

ALINE ALINE

Benic-Fukushima-Garcia-Montero-Venugopalan (2018)

NLO becomes dominant at higher energies and with smaller photon momentum (rapidity)

Kinematics

Hard photons \rightarrow Hard gluons (more k_t -factorized)

Soft photons \rightarrow Soft (and thus saturation) gluons ???

Kinematics

ANDER AND ANDER AND AND AND AND AND AND AND AND AND

Hard photons \rightarrow Hard gluons (more k_t -factorized)

Soft photons \rightarrow Soft (and thus saturation) gluons ???

Kinematics

ANDER AND AND AND AND AND AND AND AND A

Hard photons \rightarrow Hard gluons (more k_t -factorized)

Soft photons → **Soft (and thus saturation) gluons** ???

Relevant x

ĦŊĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿŴĸĔŶŢĿ

Benic-Fukushima-Garcia-Montero-Venugopalan (2018)

Averaged x over integrand (dominant contributions)

 $\log x \sim \log 10^{-3}$ must be resummed \rightarrow small-x evolution

This approximation makes sense when a large momentum (or quark mass) is involved in the considered process

Many complicated PDF reduced to only one

Comparison w/wo Resummation

ARNA, ARNA

10% enhancement by saturation (not suppression!)

Comparison w/wo Resummation

Similar enhancement also in quark-antiquark Fujii-Gelis-Venugopalan (2006)

Calculation Details ひょう、うちしょう、うちしょう、うちしょう、うちしょう、うちしょう、うちしょう、うちしょう、うちしょう、うちし LO + NLO (Bremsstrahlung) (full-CGC) 10-dimensional numerical integration $(k_T$ -factorized) 8-dimensional numerical integration k_{T} -factorization reduces different PDFs to the same CTEQ6M **Quark PDF Gluon PDF MV + rcBK matched to CTEQ6M** (small-x evol. but DGLAP not considered yet...) *K*-factor K = 2.4 (cf. K = 2.5 for *D*-meson production)

Comparison to Available Data

Benic-Fukushima-Garcia-Montero-Venugopalan (2018)

Photons in pp at LHC

Maybe okay, but maybe DGLAP corrections...

Comparison to Available Data

Benic-Fukushima-Garcia-Montero-Venugopalan (2018)

Photons in pp at LHC

Enhancement here could signal gluon saturation

R_{pA} : Ours and Theirs

Preliminary Results yet...

R_{pA} : Ours and Theirs

ANDAL ANDAL ANDAL ANDAL ANDAL AND ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL ANDAL AND AL ANDAL AND A

ATLAS 1903.02209

26

II — **Speculative Part**

Time-dependent Magnetic Field

ALAR, ALAR

$$eB_0 = \frac{8Z\alpha_e}{b^2}\sinh(Y) = (47.6 \text{ MeV})^2 \left(\frac{1\text{fm}}{b}\right)^2 Z\sinh(Y)$$
$$t_0 = \frac{b}{2\sinh(Y)} \quad \text{comparable to } 1/Qs$$

Time-dependent Magnetic Field This should be a very interesting calculation —

People ask: what is expected from time-dependent B?

CGC photon significantly affected by strong *B* !? (Sizable photon *v*₂ can be expected...)

But, needless to say, straightforward calculation would be technically difficult (but feasible...)

Anomaly induced photon is easily estimated

Fukushima-Mameda (2012)

The form of the WZW action is fixed by the anomaly. If *B* and θ are space-time dependent, *A* can be a real photon.

Anomaly induced photon is easily estimated

$$q_0 \frac{dN_{\gamma}}{d^3 q} = q_0 \sum_i |\mathcal{M}(i; \boldsymbol{q})|^2$$

= $\frac{1 - (q_y)^2 / \boldsymbol{q}^2}{2(2\pi)^3} \left(\frac{N_c e^2 \operatorname{tr}(Q^2)}{2\pi^2} \int d^4 x \, e^{-i\boldsymbol{q}\cdot\boldsymbol{x}} B(x) \mu_5(x) \right)^2$
Chiral chemical potential represents LPV, which is caused by initial Glasma fluxes.

Anomaly induced photon is easily estimated

Time-evolution of chiral charge can be given by

$$n_5(t) = N_f \frac{g^2}{16\pi^2} \int_0^t dt \operatorname{tr}[\tilde{G}_{\mu\nu}G_{\mu\nu}] \text{ for massless quarks}$$

This can be converted to chiral chemical potential.

ದಿಂದರೆ, ಬೇಕೆಯವು, ಬೇಕೆಯವು, ಬೇಕೆಯಬೇಕೆಯವು, ಬೇಕೆಯವು, ಬೇಕೆಯವು, ಬೇಕೆಯ

LPV : Implemented by the MV model Magnetic Field : Approximated by Lienard-Wiechert Photon : Estimated by the WZW coupling

Rapid decay of the magnetic field emits photon catalyzed with the CGC topological background.

Concrete results are coming soon!

Summary

NLO+CGC completed
NLO enhanced over LO by saturated gluons
Technical developments

Applied to *pp* yields and R_{pA} \Box Enhancement of very soft (< 10GeV) photon $\Box R_{pA}$ shows sizable suppression

CGC+Magnetic Field as a major photon source
Formulation already available
Just a matter of time...