Beam Energy Scan (BES)の最新結果

野中 俊宏

革中師範大誉

AL CHINA NORMAL UNIVERSITY

チュートリアル研究会 「高エネルギー重イオン衝突の物理: 基礎・最先端・課題・展望」

QCD phase diagram

\checkmark Need to investigate the QCD phase structure in wide (μ_B ,T) region.

A. Bzdak et al, 1906.00936

QCD phase diagram

\checkmark Need to investigate the QCD phase structure in wide (μ_B ,T) region.

		T (MeV)	μ _B (MeV)	Year	Statistics(Millions) (0-80%)	√s (GeV)
ver at $\mu_B = 0$ MeV et al. Nature 443 675(200	- Crose	140	420	2010	~4	7.7
or al, Mataro 440, 070(200		152	315	2010	~12	11.5
er phase transition at	- 1st-o	156	266	2014	~ 20	14.5
	μ _B ?	160	205	2011	~36	19.6
noint?	- Critic	163	155	2011	~70	27
		164	115	2010	~130	39
		165	70	2010	~67	62.4
		166	20	2010	~350	200

The STAR detector

Large & uniform acceptance

Excellent particle identification

Particle identification

 \checkmark The combined PID with m² from TOF is used at high p_T region.

 \checkmark dE/dx measured with TPC is used for proton identification at low p_T region.

- Freeze-out conditions
- The 1st-order phase transition
- Critical point
- **✓ BES-II**
- ✓ Summary

Questions related to this talk

✓ These questions will be addressed.

- 6. QCDの相図について何を議論することができるのか。
- 7. 重イオン衝突実験において、どのような測定によって高温・高密度がで きたとするのか?
- 70. QCD臨界点、相転移について現在どこまでわかっているのか?
- 95. なぜ衝突実験では金原子核や鉛原子核をぶつけるのですか?小さい系 を測るためにより小さな原子核同士はぶつけられないのですか?

Freeze-out conditions

√s (GeV)	Statistics(Millions) (0-80%)	Year	μ _B (MeV)	T (MeV)
7.7	~4	2010	420	140
11.5	~12	2010	315	152
14.5	~ 20	2014	266	156
19.6	~36	2011	205	160
27	~70	2011	155	163
39	~130	2010	115	164
62.4	~67	2010	70	165
200	~350	2010	20	166

\checkmark Need to investigate the QCD phase structure in wide (μ_B ,T) region.

✓ Chemical freeze-out

- Inelastic collisions cease
- Yield ratios get fixed

✓ Kinetic freeze-out

- Elastic collisions cease
- Momentum distribution gets fixed

Fitted by BW model to extract kinetic freeze-out temperature and collective velocity.

PRC96, 44904(2017) 1906.03732 : STAR Collaboration

Chemical freeze-out

PRC96, 44904(2017) 1906.03732 : STAR Collaboration

✓ Inelastic collisions cease. **Particle ratios get fixed.**

 Compare with HRG to extract chemical freeze-out temperature (T_{ch}) and baryon chemical potential (μ_B).

Freeze-out conditions

✓ Chemical freeze-out

- Weak temperature dependence
- Centrality dependence of μ_B

✓ Kinetic freeze-out

- Central collisions \rightarrow lower value of T_{kin} and larger collectivity $<\beta>$
- Stronger collectivity at higher energy, even for peripheral collisions.

Toshihiro Nonaka, Heavy-Ion Tutorial, @Riken 12

✓ Both the larger separation of the freeze-out temperature (T_{ch}-T_{kin}) and stronger collectivity imply a **longer hadronic interactions at** higher collision energies.

PRC96, 44904(2017) : STAR Collaboration

1st-order phase transition

Directed flow vs rapidity

PRL120, 62301(2018) : STAR Collaboration

✓ Directed flow : collected sidewards deflection of the particles

Figure by H. Kato

V1 Versus collision energy

警

PRL120, 62301(2018) : STAR Collaboration

v₁ slope versus collision energy

300

STAR: 1708.07132; PRL120, 62301(2018)

- ✓ Minimum at $\sqrt{s_{NN}} = 14.5$ GeV for net-proton and net- Λ , but net-kaon v₁ slope continue decreasing as energy decreases.
- ✓ Model calculations show minimum slope at √s_{NN}~4 GeV
- Softest point only for baryons? \checkmark
- ✓ Need model to explain

M. Isse, A. Ohnishi et al, PRC72, 064908(05) Y. Nara, A. Ohnishi, H. Stoecker, PRC94, 034906(16)

Critical point search : Higher-order fluctuation

STAR, PoS CPOD2014 (2015)019

Higher-order fluctuations

Moments and cumulants are mathematical measures of "shape" of a distribution which probe the fluctuation of observables.

- \checkmark
- S and k are non-gaussian fluctuations. \checkmark

Cumulant *⇐* **Moment** \checkmark

 $<\delta N>=N-<N>$ $C_1 = M = \langle N \rangle$ $C_2 = \sigma^2 = \langle (\delta N)^2 \rangle$ $C_3 = S\sigma^3 = \langle \delta N \rangle^3 >$ $C_4 = \kappa \sigma^4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$

Moments: mean (M), standard deviation (σ), skewness (S) and kurtosis (κ).

Cumulant : additivity \checkmark

 $C_n(X+Y) = C_n(X) + C_n(Y)$

proportional to volume

Higher-order fluctuations

- which probe the fluctuation of observables.
 - \checkmark
 - S and k are non-gaussian fluctuations. \checkmark

Moments and cumulants are mathematical measures of "shape" of a distribution

Moments: mean (M), standard deviation (σ), skewness (S) and kurtosis (κ).

Try TH1::Double_t GetSkewness(), GetKurtosis()

Trom wikipedia

Cumulant : additivity

 $C_n(X+Y) = C_n(X) + C_n(Y)$

proportional to volume

$$C_2 = \langle \delta N \rangle^2 >_c \approx \xi^2 \qquad C_5 = \langle \delta N \rangle^5 >_c \approx \xi^5$$

$$C_3 = \langle \delta N \rangle^3 >_c \approx \xi^{4.5} \quad C_6 = \langle \delta N \rangle^6 >_c \approx \xi^1$$

$$C_4 = \langle \delta N \rangle^4 >_c \approx \xi^7$$

$$S\sigma = \frac{C_3}{C_2} = \frac{\chi_3}{\chi_2} \quad \kappa \sigma^2 = \frac{C_4}{C_2} = \frac{\chi_4}{\chi_2}$$
$$\chi_n^q = \frac{1}{VT^3} \times C_n^q = \frac{\partial^n p / T^4}{\partial \mu_q^n}, \quad q = B, Q, S$$

Net-proton from BES-I

- Statistical fluctuation : Poisson distribution (C_n=C₁)
- ✓ Poisson Poisson = Skellam
 - $C_{odd} = \mu_p \mu_{pbar}, C_{even} = \mu_p + \mu_{pbar}$
- ✓ Deviation below Poisson baseline (unity).
- ✓ Both 3rd- and 4th-order fluctuations have their minima at $\sqrt{s_{NN}} = 19.6$ GeV.
 - PRL112, 032302(2014): STAR Collaboration

 $error(\kappa\sigma^2) \propto \frac{\sigma^2}{\varepsilon^2} \frac{1}{\sqrt{N_{evts}}}$

✓ Large statistical uncertainties, need more data.

Net-proton from BES-I

- \checkmark Mean p_T of proton is ~1 GeV/c.
- Proton statistics are doubled by measuring p_T acceptance up to 2.0 GeV/c.

PRL112, 032302(2014): STAR Collaboration

Non-monotonic behavior

STAR, PoS CPOD2014 (2015)019

- $\sqrt{\kappa\sigma^2(C_4/C_2)}$ shows a non-monotonic behaviour. The trend is consistent with the theoretical calculation.
- ✓ Enhancement at low beam energies cannot be explained by baryon number conservation.

Beam Energy Scan Phase II

Beam Energy Scan Phase II

√s _{NN} (GeV)	Events (10 ⁶)	BES-II / BES-I	Weeks	μ _Β (MeV
200	350	2010		25
62.4	67	2010		73
54.4	1200	2017		
39	39	2010		112
27	70	2011		156
19.6	400 / 36	2019-21 / 2011	3	206
14.5	300 / 20	2019-21 / 2014	2.5	264
11.5	230 / 12	2019-21 / 2010	5	315
9.2	160 / 0.3	2019-21 / 2008	9.5	355
7.7	100 / 4	2019-21 / 2010	14	420

T _{CH} (MeV)
166
165
164
162
160
156
152
140
140

✓ BES-II has started this year.

Luminosity has been improved with the electron cooling system.

Non-monotonic rapidity dependence as a signal for critical point Sakaida et al, Phys. Rev. C 95, 064905

✓ BES-II has started this year.

- Luminosity has been improved with the electron cooling system.
- ✓ Inner TPC has been fully integrated, which extends the pseudorapidity coverage from 1.0 to 1.5

✓ Higher-order fluctuation measurement with small errors and large acceptance.

Toshihiro Nonaka, Heavy-Ion Tutorial, @Riken 28

Critical point search in BES-II

STAR Data : PoS CPOD2014 (2015)019

✓ Statistical uncertainties will be dramatically reduced.

✓ Can we measure a possible "peak" structure?

Thank you for your attention

Back up

✓ Large data sets in various collision energies. ✓ Large and homogeneous acceptance, especially important for fluctuation analysis.

√S _{NN} (GeV)	Events (10 ⁶)	Year
200	350	2010
62.4	67	2010
54.4	1200	2017
39	39	2010
27	70	2011
19.6	36	2011
14.5	20	2014
11.5	12	2010
7.7	4	2010

Freeze-out conditions

✓ Both the larger separation of the freeze-out temperature (T_{ch}-T_{kin}) and stronger collectivity imply a longer hadronic interactions at higher collision energies.

PRC96, 44904(2017) : STAR Collaboration

Skellam baseline

Assuming protons and antiprotons follow Poisson distribution. ✓ Poisson - Poisson = Skellam

 $p(k;\mu_1,\mu_2)=\Pr\{K=k\}=e^{-0}$

between means of two Poissons.

$$^{(\mu_1+\mu_2)}igg(rac{\mu_1}{\mu_2}igg)^{k/2}I_k(2\sqrt{\mu_1\mu_2})$$

✓Odd(even) order cumulant of Skellam distribution is difference(sum) μ_1, μ_2 : mean parameter of Poisson

Skellam baseline

Assuming protons and antiprotons follow Poisson distribution. ✓ Poisson - Poisson = Skellam

 $p(k;\mu_1,\mu_2)=\Pr\{K=k\}=e^{-0}$

✓Odd(even) order cumulant of Skellam distribution is difference(sum) between means of two Poissons. μ_1, μ_2 : mean parameter of Poisson

$$C_{odd} = \mu_1 - \mu_2$$

$$C_{even} = \mu_1 + \mu_2$$

$$S\sigma = \frac{C_3}{C_2} = \frac{\mu_1 - \mu_2}{\mu_1 + \mu_2}$$

$$\kappa\sigma^2 = \frac{C_4}{C_2} = 1$$

$$\int_{0}^{\infty} \frac{C_1 = 1.99628 + -0.00139944}{C_2 = 17.9918 + -0.0053056}$$

$$C_3 = 1.9593 + -0.0387893$$

$$\int_{0}^{10} \frac{C_4 = 18.082}{N_1} + -0.56018$$

$$^{(\mu_1+\mu_2)}igg(rac{\mu_1}{\mu_2}igg)^{k/2}I_k(2\sqrt{\mu_1\mu_2})$$

First measurement of net proton

\checkmark At $\mu_B < 210$ MeV, the 4th-order fluctuation is found to be flat as a function of collision energy.

PRL105, 022302(2010): STAR Collaboration

Data analysis method

- X.Luo, J. Xu, B. Mohanty and N. Xu. J. Phys. G40,105104(2013)
- M. Kitazawa : PRC.86.024904, M. Kitazawa and M. Asakawa : PRC.86.024904
- Bzdak and V. Koch : PRC.86.044904, PRC.91.027901, X. Luo : PRC.91.034907
- T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912
- X. Luo, T. Nonaka : PRC.99.044917

Net-proton multiplicity distribution

Net-proton $(N_p - N_{\overline{p}})$

Cumulants in BES-I energies

STAR, PoS CPOD2014 (2015)019

\checkmark p_T region can be extended up to 2.0 GeV by using TOF as well as TPC. \checkmark (Anti)proton statistics is doubled with respect to the published results.

Non-critical contributions

 \checkmark At $\sqrt{s_{NN}} < 10$ GeV, data shows $\kappa \sigma^2 > 1$, while model shows $\kappa \sigma^2 < 1$ No model simulations can explain the enhancement at low beam energies.

Z. Feckova, et al., PRC92, 064908(2015). J. Xu, et. al., PRC94, 024901(2016). X. Luo et al., NPA931, 808(14), P.K. Netrakanti et al. 1405.4617, NPA947, 248(2016), P. Garg et al. PLB 726, 691(2013). S. He, et. al., PLB762, 296 (2016). S. He, X. Luo, PLB 774, 623 (2017).

Rapidity acceptance dependence

New data set : 54.4 GeV

Collision system and energy	Au+Au and 54.4 GeV
Baryon Chemical Potential	~ 90 MeV
No. of events	~ 553 M
Collision centrality	0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40 50%, 50-60%, 60-70%, 70-80%
Centrality	η < 1; charged particles other than protons and antiprotons
Z Vertex	+/- 30 cm
Vertex radial position	2 cm
Detectors	Time Projection Chamber and Time-of-Flig
Particle Type	Proton and antiprotons
Rapidity	+/- 0.5
Transverse Momentum Range	0.4 to 2.0 GeV/c
Secondary proton backgrounds	DCA < 1cm

New data sets : 54.4 GeV

✓ Results at 54.4 GeV follow the trend very well.

Net charge from PHENIX

PRC93,011901(2016): PHENIX

✓ No non-monotonic **behavior** was observed.

✓ Acceptance is important.

Sixth-order cumulants

 \checkmark There isn't yet any experimental evidence for the smooth crossover at $\mu_{\rm B} \sim 0$ MeV.

Sixth-order cumulants of net-charge and net-baryon distributions are predicted to be negative if the freeze-out is close enough to the phase transition, which is the characteristic signal for $\sqrt{s_{NN}}$ >60 GeV.

Positive sign is predicted in $\sqrt{s_{NN}}$ <60 GeV

C.Schmidt,Prog.Theor.Phys.Suppl.186,563–566(2010) Cheng et al, Phys. Rev. D 79, 074505 (2009) Friman et al, Eur. Phys. J. C (2011) 71:1694

 χ_6^Q/χ_2^Q $\chi_4^{\rm B}/\chi_2^{\rm B}$ $\chi_6^{\rm B}/\chi_2^{\rm B}$ $\chi_4^{\rm Q}/\chi_2^{\rm Q}$ Freeze-out conditions HRG ~ 2 ~ 10 QCD: $T^{\rm freeze}/T_{pc} \lesssim 0.9$ $\gtrsim 1$ $\gtrsim 1$ ~ 10 ~ 2 QCD: ~1 $T^{\text{freeze}}/T_{pc} \simeq 1 \qquad \sim 0.5$ <0 <0 Predicted scenario for this measurement 1.2

\checkmark Clear separation and opposite signs between two energies in 0-40%.

\checkmark Results from the central bin of 200 GeV Au+Au collisions are consistent with the LQCD prediction \rightarrow remittance of chiral phase transition?

Acceptance dependence

- Monotonic decrease with enlarging the acceptance.
- p_T dependence seems to be saturated at 0.4< p_T <1.7 GeV/c. \checkmark

60 protons and 15 antiprotons are embedded

Volume fluctuation

them in one centrality.

✓ Strongly depend on the centrality resolution.

Calculate cumulants in each multiplicity bin, and average

 K_{r}^{j} : r-th order cumulant in i-th multiplicity bin n^i : # of events in i-th multiplicity bin

Volume fluctuation

Centrality is determined by using pions and kaons as is done in the expreiment. N_{part} given by UrQMD. one centrality.

- True cumulants can be defined by using the event by event
- ✓ Calculate cumulants at each N_{part}, then averaged them in

Volume fluctuation

✓ Derived based on the assumption of independent particle production from source of N_{part}.

model inputs.

 $\begin{aligned} \kappa_1(\Delta N) &= \langle N_W \rangle \, \kappa_1(\Delta n) \\ \kappa_2(\Delta N) &= \langle N_W \rangle \, \kappa_2(\Delta n) + \langle \Delta n \rangle^2 \, \kappa_2(N_W), \\ \kappa_3(\Delta N) &= \langle N_W \rangle \, \kappa_3(\Delta n) + 3 \, \langle \Delta n \rangle \, \kappa_2(\Delta n) \kappa_2(N_W) + \langle \Delta n \rangle^3 \, \kappa_3(N_W), \\ \kappa_4(\Delta N) &= \langle N_W \rangle \, \kappa_4(\Delta n) + 4 \, \langle \Delta n \rangle \, \kappa_3(\Delta n) \kappa_2(N_W) \\ + 3 \kappa_2^2(\Delta n) \kappa_2(N_W) + 6 \, \langle \Delta n \rangle^2 \, \kappa_2(\Delta n) \kappa_3(N_W) + \langle \Delta n \rangle^4 \, \kappa_4(N_W). \end{aligned}$ Δn : net-proton per Nw P. Braun-Munzinger, A. Rustamov, J. Stachel: arXiv:1612.00702 ΔN : net-proton

Volume fluctuations can be completely eliminated with some

Additional terms appears from the event by

