「偏極，CME，CVE」

新井田 貴文

University of Tsukuba

WAYNE STATE UNIVERSITY

宇宙史研究センター
Tomonaga Center for the History of the Universe

Important features in non-central heavy-ion collisions

Strong magnetic field

$$
\begin{aligned}
B & \sim 10^{13} \mathrm{~T} \\
(e B & \left.\sim \operatorname{MeV}^{2}(\tau=0.2 \mathrm{fm})\right)
\end{aligned}
$$

\rightarrow Chiral magnetic effect Chiral magnetic wave Particle polarization

Orbital angular momentum

$$
L \sim 10^{5} \hbar
$$ Particle polarization

Chiral Magnetic Effect（CME）

Magnetic field + massless quarks + chirality imbalance
spin alignment （opposite direction for opposite sign）
spin and momentum in（anti－）parallel for right（left）－handed quarks
right－handed quarks \neq left－handed quarks

Induction of electric current along the magnetic field is called Chiral Magnetic Effect（CME）

Experimental observable of CME

"Gamma correlator" sensitive to the charge separation
S.Voloshin PRC70, 057901 (2004)

$$
\begin{aligned}
\gamma_{\alpha \beta} & =\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle \\
\Delta \gamma & =\gamma_{+-}-\gamma_{ \pm \pm}
\end{aligned}
$$

e.g. extreme case of charge separation

$$
\begin{aligned}
\gamma_{+-} & =\langle\cos (\pi / 2-\pi / 2)\rangle=1 \\
\gamma_{ \pm \pm} & =\langle\cos (\pi / 2+\pi / 2)\rangle=-1 \\
\Delta \gamma & =2
\end{aligned}
$$

* Magnetic field direction is perpendicular to the reaction plane in heavy-ion collisions

ー ー

Y correlator in anomalous hydrodynamics

$$
\begin{aligned}
\gamma_{\alpha \beta} & =\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle \\
\Delta \gamma & =\gamma_{+-}-\gamma_{ \pm \pm}
\end{aligned}
$$

Y. Hirono, T. Hirano, and D. Kharzeev, arXiv:1412.0311

y correlator is indeed sensitive to CME!

Y-correlator at RHIC and the LHC

D. Kharzeev, J. Liao, S. Voloshin, and G. Wang, PPNP88(2016)1-28

STAR, PRL113, 052302 (2014)
ALICE, PRL110, 021301 (2013)

Charge separation was observed at RHIC and the LHC!
The difference between charge combinations ($\Delta \gamma$) decreases in lower energies.

Known background

S.Voloshin PRC70, 057901 (2004)
S. Schlichting and S. Pratt, PRC83, 014913 (2011)
A. Bzdak, V. Koch, and J. Liao, PRC83, 014905 (2011)
"Flowing clusters"
(Local charge conservation $+\mathrm{v}_{2}$)
e.g. resonance contributes to $\Delta \gamma$, stronger collimation in in-plane

RP-independent background e.g. back-to-back jets, important at low multiplicity, n gap wouldn't help

$$
\gamma_{\alpha \beta}=\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle
$$

S. Schlichting and S. Pratt, Phys. Rev. C 83, 014913 (2011)

At Small system

Idea: Event plane (Ψ_{EP}) and B-field $\left(\Psi_{\mathrm{B}}\right)$ orientations are uncorrelated

$$
\begin{aligned}
\gamma_{\alpha \beta} & =\left\langle\cos \left(\phi_{\alpha}+\dot{\phi}_{\beta}-2 \Psi_{R P}\right)\right\rangle \\
\Delta \gamma & =\gamma_{+-}-\gamma_{ \pm \pm}
\end{aligned}
$$

- R. Belmont and J. Nagle, PRC96, 024901 (2017)
G. Wang (STAR), RHIC\&AGS2018

proton size fluctuations gives finite correlation btw $\Psi_{\text {EP }}$ and Ψ_{B} but much smaller CME signal in $\mathrm{p}-\mathrm{Pb}$ than in $\mathrm{Pb}-\mathrm{Pb}$ - D. Kharzeev, Z. Tu, A, Zhang, and W. Li, PRC97, 024905 (2018

CME is not expected in $\mathrm{p}(\mathrm{d})+\mathrm{A}$ collisions.
Background (back-to-back jets) would be dominant in low multiplicity events.

Using event shape engineering

Event shape engineering (ESE) J. Schukraft, A. Timmins, and S. Voloshin, PLB719 (2013) 394
Select larger/smaller v_{2} events, likely selecting initial eccentricity

Estimate the CME contribution comparing the slopes with models

- assuming the background is linearly proportional to v_{2}
- model-dependent estimate of magnetic field at $\mathrm{T}=0.2 \mathrm{fm} / \mathrm{c}$

Possible CME contribution

CMS, PRC97, 044912 (2018) ALICE, PLB777(2018)151 STAR, QM2018

Good progress to quantify possible CME contribution. Need to be careful what assumptions are there.

```
ALICE : <30% in Pb+Pb 2.76 TeV
```

ALICE : <30% in Pb+Pb 2.76 TeV
CMS :<7% in Pb+Pb 5 TeV and <13% in p-Pb 8.16 TeV
CMS :<7% in Pb+Pb 5 TeV and <13% in p-Pb 8.16 TeV
STAR : <20% in Au+Au 200 GeV

```
STAR : <20% in Au+Au 200 GeV
```


Current observables at a glance

Slide from S. Voloshin @chirality workshop 2019

Observable	(Just a few) names	Problems/questions	My opinion
		Dependence of the signal on v 2 ?	
"q2obs"ESE	F. Wang, G. Wang	"Play" on stat. fluctuations, Not-interpretable?	
small systems	CMS, F. Wang, others	Strong RP independent background, nothing/little to say about CME	
Mixed harmonics	Voloshin, CMS, many others	Requires detailed knowledge about the kinematic of the cluster decays (as e.g. pT)	
invariant mass	F. Wang, J. Zhao	Requires knowledge of the inv. mass spectrum of "sphaleron" decays	
Spectator /participant EP	F. Wang, J. Zhao S. Voloshin	Promising with careful treatment of contributions to v2 and gamma	
$\Delta \gamma, \Delta \delta ; H, F, \kappa$	J. Liao, G. Wang, et al	No strict justification => imprecise	
"Balance function"	A. Tang	"General" questions from previous page	$?$
ΔS	R. Lacey	"General" questions from previous page	

- A lot of idea/observables but need
to make their assumptions clear
- Results of isobaric collisions will come soon (see outlook slide)

Chiral Vortical Effect（CVE）

Similar to CME，

system rotation leads to vector and axial current along ω
D．Kharzeev and D．Son，PRL106．062301（2011）
D．Kharzeev et al．，PPNP88（2016）1－28

$$
\begin{array}{llll}
J_{E}^{\mathrm{CME}} \sim \frac{2}{3}\left(N_{f}=3\right) & \text { or } & \frac{5}{9}\left(N_{f}=2\right) \\
J_{B}^{\mathrm{CME}}=0\left(N_{f}=3\right) & \text { or } & \sim \frac{1}{9}\left(N_{f}=2\right) . \\
& & \\
J_{E}^{\mathrm{CVE}}=0\left(N_{f}=3\right) & \text { or } & \sim \frac{1}{3}\left(N_{f}=2\right) \\
J_{B}^{\mathrm{CVE}} \sim 1\left(N_{f}=3\right) & \text { or } & \sim \frac{2}{3}\left(N_{f}=2\right) .
\end{array}
$$

$$
\begin{aligned}
& Q(u, d, s)=(+2 / 3,-1 / 3,-1 / 3) \\
& B(u, d, s)=(1 / 3,1 / 3,1 / 3)
\end{aligned}
$$

Spin polarization by vorticity is＂charge－blind＂． CVE mostly contributes to baryon current．

Baryon-baryon (hadron) correlations

L. Wen (STAR), QM2015

Yos>Yss and hierarchy of p-hadron γ correlator, consistent with CVE expectation, although there would be $B G$ effects.

Vorticity in HIC

In non-central collisions,
the initial collective longitudinal flow velocity depends on x.

$$
\omega_{y}=\frac{1}{2}(\nabla \times v)_{y} \approx-\frac{1}{2} \frac{\partial v_{z}}{\partial x}
$$

Global polarization

- Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
- S. Voloshin, nucl-th/0410089 (2004)
aNon-zero angular momentum transfers to the spin degrees of freedom o Particles' and anti-particles' spins are aligned with angular momentum, L
-Magnetic field align particle's spin
oParticles' and antiparticles' spins are aligned oppositely along \boldsymbol{B} due to the opposite sign of magnetic moment

Rotation vs. Polarization

Barnett effect:

rotation \rightarrow polarization
Magnetization of an uncharged body
when spun on its axis S. Barnett, Phys. Rev. 6, 239 (1915)

figure: M. Matsuo et al., Front. Phys., 30 (2015)

$$
M=\frac{\chi \omega}{\gamma} \quad \begin{gathered}
x: \text { magnetic susceptibility } \\
r: \text { gyromagnetic ratio }
\end{gathered}
$$

Einstein-de-Haas effect:

 polarization \rightarrow rotation
"the only experiment by Einstein"

Rotation of a ferromagnet under change in the direction/strength of magnetic-field to conserve the total angular momentum.

$$
\vec{J}=\vec{L}+\vec{S}
$$

A.Einstein, W. J. de Haas,
B.Koninklijke Akademie van Wetenschappen te Amsterdam, C.Proceedings, 18 I, 696-711 (1915)

How to measure the global polarization?

Parity-violating decay of hyperons

Daughter baryon is preferentially emitted in the direction of hyperon's spin (opposite for anti-particle)

$$
\frac{d N}{d \Omega^{*}}=\frac{1}{4 \pi}\left(1+\alpha_{\mathrm{H}} \mathbf{P}_{\mathrm{H}} \cdot \mathbf{p}_{\mathbf{p}}^{*}\right)
$$

Рн: ^ polarization
Pp^{*} : proton momentum in the Λ rest frame α н: \wedge decay parameter

$$
\left(\alpha_{\wedge}=-\alpha_{\wedge} \bar{\lambda}=0.642 \pm 0.013\right)
$$

$$
\Lambda \rightarrow p+\pi^{-}
$$

(BR: 63.9\%, c $\tau \sim 7.9 \mathrm{~cm}$)
C. Patrignani et al. (PDG), Chin. Phys. C 40, 100001 (2016)

Projection onto the transverse plane

Angular momentum direction can be determined by spectator deflection (spectators deflect outwards)

- S. Voloshin and TN, PRC94.021901 (R)(2016)

ψ_{1} : azimuthal angle of b
$\phi_{p}{ }^{*}: \phi$ of daughter proton in \wedge rest frame STAR, PRC76, 024915 (2007)

First observation of fluid vortices formed by HIC

Discover Magazine, 2017

BEST NEW IDEAS \& INSIGHTS Discover TOP 100
 spectial issine

Evolution's Timeline Tonnled

The Fastest Fluid
 by Sylvia Morrow

Superhot material spins at an incredible rate.

First observation of fluid vortices in HIC

Positive polarization signal at lower energies!
-- The most vortical fluid!

$$
\begin{aligned}
\omega & =\left(P_{\Lambda}+P_{\bar{\Lambda}}\right) k_{B} T / \hbar \\
& \sim 0.02-0.09 \mathrm{fm}^{-1} \quad \begin{array}{l}
\text { Mn: } \wedge \text { magnetic moment } \\
\mathrm{T}: \text { temperature at therma }
\end{array} \\
& \sim 0.6-2.7 \times 10^{22} \mathrm{~S}^{-1} \quad(\mathrm{~T}=160 \mathrm{MeV})
\end{aligned}
$$

- Ph looks to increase in lower energies
- Hint of the difference in P_{H} between \wedge and anti- \wedge
-- Effect of the initial magnetic field? \rightarrow BESII

$$
\begin{aligned}
& P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T}+\frac{\mu_{\Lambda} B}{T} \\
& P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T}
\end{aligned}
$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

Vorticity we know

Ocean surface vorticity	$\sim 10^{-5} \mathrm{~s}^{-1}$
Jupiter's great red spot	$\sim 10^{-4} \mathrm{~s}^{-1}$
Core of supercell tornado	$\sim 10^{-1} \mathrm{~s}^{-1}$
Rotating, heated soap bubbles $\sim 10^{2} \mathrm{~s}^{-1}$	
Superfluid helium nano droplet $\sim 10^{6} \mathrm{~s}^{-1}$	

Ocean surface vorticity https://sos.noaa.gov/datasets/ocean-surface-vorticity/

Supercell in Oklahoma (2016)

Great red spot of Jupiter (from wikipedia)

The most vortical fluid!

Ocean surface vorticity	$\sim 10^{-5} \mathrm{~s}^{-1}$
Jupiter's great red spot	$\sim 10^{-4} \mathrm{~s}^{-1}$
Core of supercell tornado	$\sim 10^{-1} \mathrm{~s}^{-1}$
Rotating, heated soap bubbles $\sim 10^{2} \mathrm{~s}^{-1}$	
Superfluid helium nano droplet $\sim 10^{6} \mathrm{~s}^{-1}$	
Matter in heavy ion collisions	$\sim 10^{22} \mathrm{~s}^{-1}$

Supercell in Oklahoma (2016)
http://www.silverliningtours.com/tag/tornado/page/3/

Feed-down effect

- Only $\sim 25 \%$ of measured \wedge and anti- \wedge are primary, while $\sim 60 \%$ are feed-down from $\Sigma^{*} \rightarrow \wedge \pi, \Sigma 0 \rightarrow \wedge r, \equiv \rightarrow \wedge \pi$
- Polarization of parent particle R is transferred to its daughter Λ

$$
\mathbf{S}_{\Lambda}^{*}=C \mathbf{S}_{R}^{*} \quad\left\langle S_{y}\right\rangle \propto \frac{S(S+1)}{3}\left(\omega+\frac{\mu}{S} B\right)
$$

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)
$C_{\wedge R}$: coefficient of spin transfer from parent R to Λ
S_{R} : parent particle's spin
$f_{\wedge R}$: fraction of \wedge originating from parent R
μ_{R} : magnetic moment of particle R

$$
\binom{\varpi_{\mathrm{c}}}{B_{\mathrm{c}} / T}=\left[\begin{array}{ll}
\frac{2}{3} \sum_{R}\left(f_{\Lambda R} C_{\Lambda R}-\frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R}\right) S_{R}\left(S_{R}+1\right) & \frac{2}{3} \sum_{R}\left(f_{\Lambda R} C_{\Lambda R}-\frac{1}{3} f_{\Sigma^{0} R} C_{\Sigma^{0} R}\right)\left(S_{R}+1\right) \mu_{R} \\
\frac{2}{3} \sum_{\bar{R}}\left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}}-\frac{1}{3} f_{\bar{\Sigma}^{0} \bar{R}} C_{\bar{\Sigma}^{0} \bar{R}}\right) S_{\bar{R}}\left(S_{\bar{R}}+1\right) & \frac{2}{3} \sum_{\bar{R}}\left(f_{\overline{\Lambda R}} C_{\overline{\Lambda R}}-\frac{1}{3} f_{\bar{\Sigma}^{0} \bar{R}} C_{\bar{\Sigma}^{0} \bar{R}}\right)\left(S_{\bar{R}}+1\right) \mu_{\bar{R}}
\end{array}\right]^{-1}\binom{P_{\Lambda}^{\text {meas }}}{P_{\overline{\bar{\Lambda}}}^{\text {meas }}}
$$

Decay	C
Parity conserving: $1 / 2^{+} \rightarrow 1 / 2^{+} 0^{-}$	$-1 / 3$
Parity conserving: $1 / 2^{-} \rightarrow 1 / 2^{+} 0^{-}$	1
Parity conserving: $3 / 2^{+} \rightarrow 1 / 2^{+}$	0^{-}
Parity-conserving: $3 / 2^{-} \rightarrow 1 / 2^{+}$	0^{-}
$\Xi^{0} \rightarrow \Lambda+\pi^{0}$	$-1 / 5$
$\Xi^{-} \rightarrow \Lambda+\pi^{-}$	+0.900
$\Sigma^{0} \rightarrow \Lambda+\gamma$	+0.927

$15 \%-20 \%$ dilution of primary \wedge polarization (model-dependent)

More precise measurement at $\sqrt{ } s_{N N}=200 \mathrm{GeV}$

Confirmed energy dependence of P_{H} with new results for 200 GeV $>5 \sigma$ significance utilizing 1.5B events (2010+2011+2014)

- partly due to stronger shear flow structure in lower $\sqrt{ }$ SNN $^{\prime}$ because of baryon stopping

Theoretical models can describe the data well
I. Karpenko and F. Becattini, EPJC(2017)77:213, UrQMD+vHLLE H. Li et al., PRC96, 054908 (2017), AMPT
Y. Sun and C.-M. Ko, PRC96, 024906 (2017), CKE
Y. Xie et al., PRC95, 031901 (R) (2017), PICR
D.-X. Wei et al., PRC99, 014905 (2019), AMPT

$$
\begin{aligned}
& P_{H}(\Lambda)[\%]=0.277 \pm 0.040(\text { stat }) \pm_{0.049}^{0.039}(\mathrm{sys}) \\
& P_{H}(\bar{\Lambda})[\%]=0.240 \pm 0.045(\text { stat }) \pm_{0.045}^{0.061}(\mathrm{sys})
\end{aligned}
$$

How about at higher/lower energy?

ALICE preliminary $\mathrm{Pb}+\mathrm{Pb}$ at $\sqrt{ } \mathrm{S}_{\mathrm{NN}}=2.76 \mathrm{TeV}$

$$
\begin{aligned}
& P_{H}(\Lambda)[\%]=-0.08 \pm 0.10(\text { stat }) \pm 0.04 \text { (syst) } \\
& P_{H}(\bar{\Lambda})[\%]=0.05 \pm 0.10(\text { stat }) \pm 0.03 \text { (syst) }
\end{aligned}
$$

M. Konyushikhin, QCD Chirality Workshop 2017

HADES preliminary Au+Au at $\sqrt{ } S_{N N}=2.4 \mathrm{GeV}$

$$
\begin{aligned}
P_{H}(\Lambda)[\%] & =3.672 \pm 0.699 \text { (stat.) } \\
P_{H}^{\mathrm{BG}}[\%] & =3.689 \pm 1.133 \text { (stat.) }
\end{aligned}
$$

F. Kornas, SQM2019

Centrality dependence of P_{H}

STAR, PRC98, 014910 (2018)

In most central collision \rightarrow no initial angular momentum
As expected, the polarization decreases in more central collisions

Λ polarization vs. charge asymmetry

Chiral Separation Effect

B-field + massless quarks + non-zero $\mu_{v} \rightarrow$ axial current J_{5}

$$
\mu_{\mathrm{v}} / T \propto \frac{\left\langle N_{+}-N_{-}\right\rangle}{\left\langle N_{+}+N_{-}\right\rangle}=A_{\mathrm{ch}}
$$

\square Slopes of Λ and anti- \wedge seem to be different ($\sim 2 \sigma$ level)口Possible contribution to the polarization from the axial current J_{5} induced by B-field (Chiral Separation Effect) S. Shlichting and S. Voloshin

Local vorticity

vortex induced by jet

Y. Tachibana and T. Hirano, NPA904-905 (2013) 1023
B. Betz, M. Gyulassy, and G. Torrieri, PRC76.044901 (2007)

local vorticity induced by collective flow

L.-G. Pang, H. Peterson, Q. Wang, and X.-N. Wang, PRL117, 192301 (2016)
F. Becattini and I. Karpenko, PRL120.012302 (2018)
S. Voloshin, EPJ Web Conf.171, 07002 (2018)

Polarization along the beam direction

S. Voloshin, SQM2017
F. Becattini and I. Karpenko, PRL120.012302 (2018)

Stronger flow in in-plane than in out-of-plane could make local polarization along beam axis!

$$
\begin{aligned}
\frac{d N}{d \Omega^{*}} & =\frac{1}{4 \pi}\left(1+\alpha_{\mathrm{H}} \mathbf{P}_{\mathbf{H}} \cdot \mathbf{p}_{p}^{*}\right) \\
\left\langle\cos \theta_{p}^{*}\right\rangle & =\int \frac{d N}{d \Omega^{*}} \cos \theta_{p}^{*} d \Omega^{*} \\
& =\alpha_{\mathrm{H}} P_{z}\left\langle\left(\cos \theta_{p}^{*}\right)^{2}\right\rangle \\
\therefore P_{z} & =\frac{\left\langle\cos \theta_{p}^{*}\right\rangle}{\alpha_{\mathrm{H}}\left\langle\left(\cos \theta_{p}^{*}\right)^{2}\right\rangle} \\
& =\frac{3\left\langle\cos \theta_{p}^{*}\right\rangle}{\alpha_{\mathrm{H}}} \text { (if perfect detector) }
\end{aligned}
$$

α н: hyperon decay parameter
$\theta_{p}:: \theta$ of daughter proton in \wedge rest frame

Longitudinal component, P_{z}, can be expressed with $\left\langle\cos \theta_{\mathrm{p}}{ }^{*}\right\rangle$. $<\left(\cos \theta_{\mathrm{p}}{ }^{*}\right)^{2}>$ accounts for an acceptance effect

Polarization along the beam direction

- Effect of Ψ_{2} resolution is not corrected here
S. Voloshin, SQM2017

F. Becattini and I. Karpenko, PRL. 120.012302 (2018)

out-of-plane

- Sine structure as expected from the elliptic flow!
\square Opposite sign to the hydrodynamic model and transport model (AMPT)
- F. Becattini and I. Karpenko, PRL.120.012302 (2018)
- X. Xia, H. Li, Z. Tang, Q. Wang, PRC98. 024905 (2018)
\square Chiral kinetic and PICR models predict the same sign
- Y. Sun and C.-M. Ko, PRC99, 01 1903(R) (2019)
- Y. Xie, D. Wang, and L. P. Csernai, arXiv:1907.00773

Other related observables

$D_{0} \mathrm{~V}_{1}$, sensitive to the initial tilt and EM-field
STAR, arXiv:1905.02052
deviation from $1 / 3$ indicates spin alignment

$$
\rho_{00}=1 /\left[3+(\omega / T)^{2}\right]
$$

S. Voloshin, SQM18 proc.
inconsistent with \wedge polarization?

Cu+Au v_{1} : EM-field lifetime, quark density evolution, conductivity

T. Niida, HI Tutorial workshop, Riken

STAR, PRL118.012301 (2017)

Outlook

- Isobaric collision data (Ru+Ru, $\mathrm{Zr}+\mathrm{Zr}$)
- Same mass number but different number of protons $\rightarrow \sim 10 \%$ difference in B-field
- Test for CME as well as P_{H} splitting
- New data of 27 GeV and BESII for 7.7-19.6 GeV (collider) and 3-7.7 GeV (fixed target) with iTPC and EPD (x10 events, x1.5 better EP)
- Global polarization of multi-strangeness (\equiv and Ω)

D.-X. Wei et al., PRC99.014905 (2019)

31

Summary

- CME/CVE
- A lot of studies with various observables are ongoing but no definitive conclusion so far
- Good progress to quantify possible CME contributions to the measurements
- Stay tuned for isobaric data
- \wedge global polarization
- Experimental evidence of the most vortical fluid
- Polarization increases in lower energies within $\sqrt{ } \mathrm{SNN}^{\prime}=7.7-200 \mathrm{GeV}$, consistent with theoretical models
- HADES result indicates the polarization decreases around $\sqrt{ } \mathrm{SNN}^{2}=2.4-7.7 \mathrm{GeV}$
\rightarrow BES II STAR-FXT $\sqrt{ }$ SnN $=3-7.7 \mathrm{GeV}$
- First study of Λ polarization along the beam direction at $\sqrt{ } \mathrm{SNN}^{2}=200 \mathrm{GeV}$
- Quadrupole structure of the polarization relative to the $2^{\text {nd-order event plane }}$
\rightarrow consistent with a picture of the elliptic flow but agree/disagree among the data and theoretical calculations in the sign

Back up

Signal extraction with Λ hyperons

Effect of non-zero chemical potential

Y. Karpenko, sQM2017
Λ and $\bar{\Lambda}$: UrQMD+vHLLE vs experiment

only $\mu_{\text {в }}$ effect in model

Non-zero chemical potential makes polarization splitting between Λ and anti- Λ, but the effect seems to be small.

Vorticity in HIC

the initial collective longitudinal flow velocity depends on x.

$$
\omega_{y}=\frac{1}{2}(\nabla \times v)_{y} \approx-\frac{1}{2} \frac{\partial v_{z}}{\partial x}
$$

Possible probe of magnetic field

Becattini, Karpenko, Lisa, Upsal, and Voloshin, PRC95.054902 (2017)

$$
\begin{aligned}
P_{\Lambda} & \simeq \frac{1}{2} \frac{\omega}{T}+\frac{\mu_{\Lambda} B}{T} \\
P_{\bar{\Lambda}} & \simeq \frac{1}{2} \frac{\omega}{T}-\frac{\mu_{\Lambda} B}{T} \\
& \mu: \wedge \text { magnetic moment } \\
B & =\left(P_{\Lambda}-P_{\bar{\Lambda}}\right) k_{B} T / \mu_{\mathrm{N}} \\
& \sim 5.0 \times 10^{13}[\text { Tesla }] \\
& \text { nuclear magneton } \mu_{N}=-0.613 \mu_{\Lambda}
\end{aligned}
$$

McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

conductivity increases lifetime
(not magnitude)

$$
B \sim 10^{13} \mathrm{~T}
$$

$$
\left(e B \sim \operatorname{MeV}^{2}(\tau=0.2 \mathrm{fm})\right)
$$

Extracted B-field is close to our expectation.
Need more data with better precision
\rightarrow BES-II and Isobaric collisions

Contributions to P_{z} in hydro

I. Karpenko, QM2018

$$
\begin{aligned}
& S^{\mu} \propto \varepsilon^{\mu \rho \sigma \tau} \varpi_{\rho \sigma} p_{\tau}=\varepsilon^{\mu \rho \sigma \tau}\left(\partial_{\rho} \beta_{\sigma}\right) p_{\tau}=\underbrace{\varepsilon^{\mu \rho \sigma \tau} p_{\tau} \partial_{\rho}\left(\frac{1}{T}\right) u_{\sigma}}_{\text {grad } T}+\underbrace{\frac{1}{T} 2\left[\omega^{\mu}(u \cdot p)-u^{\mu}(\omega \cdot p)\right]}_{\text {"NR vorticity" }}+\underbrace{\varepsilon^{\mu \rho \sigma \tau} p_{\tau} A_{\sigma} u_{\rho}}_{\text {acceleration }} \\
& \text { udinal quadrupole } f_{2}: \quad \text { temperature gradient } \quad \text { rematic vorticity } \quad \text { relativistic term }
\end{aligned}
$$

P_{z} dominated by temperature gradient and relativistic term, but not by kinematic vorticity based on the hydro model.

Can we get such a small kinetic vorticity in the blast-wave model?

Variations of model parameters for P_{H}

I. Karpenko, QM2017

variation of model parameters

Initial state:
R_{\perp} : transverse granularity
R_{η} : longitudinal granularity
Fluid phase:
η / s : shear viscosity of fluid
Particlization criterion:
$\varepsilon_{\mathrm{sw}}=0.5 \mathrm{GeV} / \mathrm{fm}^{3}$

event-by-event vs. averaged

- Collision energy dependence is robust with respect to variation of the parameters of the model.
- There is no big difference between event-by-event and single shot hydrodynamic description.

Estimate kinematic vorticity with the blast-wave model

Sine modulation of ω_{z} is expected with the factor $\left[b_{n}-a_{n}\right]$.
The sign could be negative depending on the relation of flow and spatial anisotropy.

Blast-wave model parameterization

- Hydro-inspired model parameterized with freeze-out condition assuming the longitudinal boost invariance
- Freeze-out temperature T_{f}
- Radial flow rapidity ρ_{0} and its modulation ρ_{2}
- Source size R_{x} and R_{y}

$$
\begin{aligned}
& \rho\left(r, \phi_{s}\right)=\tilde{r}\left[\rho_{0}+\rho_{2} \cos \left(2 \phi_{b}\right)\right] \\
& \tilde{r}\left(r, \phi_{s}\right)=\sqrt{\left(r \cos \phi_{s}\right)^{2} / R_{x}^{2}+\left(r \sin \phi_{s}\right)^{2} / R_{y}^{2}}
\end{aligned}
$$

- Calculate vorticity at the freeze-out using the parameters extracted from spectra, v_{2}, and HBT fit

$$
\begin{aligned}
\left\langle\omega_{z} \sin (2 \phi)\right\rangle & =\frac{\int d \phi_{s} \int r d r I_{2}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right) \omega_{z} \sin \left(2 \phi_{b}\right)}{\int d \phi_{s} \int r d r I_{0}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right)} \\
\omega_{z} & =\frac{1}{2}\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right),
\end{aligned}
$$

u: local flow velocity, I_{n}, K_{n} : modified Bessel functions
F. Retiere and M. Lisa, PRC70.044907 (2004)

FIG. 2. Schematic illustration of an elliptical subshell of the source. Here, the source is extended out of the reaction plane $\left(R_{y}>R_{x}\right)$. Arrows represent the direction and magnitude of the flow boost. In this example, $\rho_{2}>0$ [see Eq. (4)]
ϕ_{s} : azimuthal angle of the source element
Φ_{b} : boost angle perpendicular to the elliptical subshell

Disagreement in P_{z} sign

Opposite sign

- UrQMD (or Glauber) IC + hydrodynamic model F. Becattini and I. Karpenko, PRL. 120.012302 (2018)
-- Assuming a local thermal equilibrium
- AMPT
X. Xia, H. Li, Z. Tang, Q. Wang, PRC98.024905 (2018)

Chiral kinetic approach
Au+Au @ 200 GeV, 30-40\%

PICR model $\Pi_{0 z}\left(p_{x}, p_{y}\right)$

Incomplete thermal equilibrium of spin degree of freedom? In hydrodynamic model, importance of relativistic contribution (from expansion and temporal term) in addition to kinematic vorticity.

P_{z} modulation from the BW model

BW parameters obtained with HBT: STAR, PRC71.044906 (2005)

STAR, arXiv:1905.11917

- Simple estimate for kinematic vorticity contribution with BW model
- Similar magnitude to the data T. Niida, S. Voloshin, A. Dobrin, and R. Bertens, in preparation
- Inclusion of HBT in the fit affects the sign in peripheral collisions

