Small system, flow-correlation

<u>ShinIchi Esumi</u>, Inst. of Physics, Univ. of Tsukuba Tomonaga Center for the History of the Universe

This talk :

- radial and elliptic flow in small to large system
- non-flow subtraction in small system

Our recent interest : at Beam Energy Scan program at RHIC/STAR

- fluctuation (conserved number, temperature and flow) and critical end point
- directed flow related correlation (eps1, tilt, vorticity) and 1st order phase transition

Radial flow

Centrality and particle mass dependence of pT distribution

7 TeV p+p

7 TeV p+p collisions

Baryon to meson enhancement

Mass (N quark) dependence Strangeness enhancement

Heavy-Ion Physics Tutorial, small-system and flow, 20/Aug/2019, Riken

Ridge in small system

Small system geometry test at RHIC

hydro description, v2, v3 Mass dependence N-quark dependence

Rapidity dependence of v2 in small systems

forward/backward v2 asymmetry ~ dN/dη distribution

very strong "trivial" non-flow contribution

> centrality dependence and 3-sub combinations

> > more details In the next slide

Heavy-Ion Physics Tutorial, small-system and flow, 20/Aug/2019, Riken

ATLAS Template fitting method in small system flow analysis

PRC 96 (2017) 024908

AMPT (quark and hadron cascade) model p+p test with reference fitting method

AMPT data

_

- Reference fitting : F(x) = a + b f(x)
- Reference fitting + v2 term : F(x) = a + b f(x) + 2 c cos(2x)

- AMPT data Reference fitting + 1
- AMPT data (Reference fitting + v2 term) + 1

Reference/template function fitting with pp/peripheral/low_mult. shape

Summary

- radial and elliptic flow in small to large system
- non-flow subtraction in small system
- 小さい系でQGPができているもしくは流体的な振る舞いがあるとされる実験的な証拠は信頼できるのか。QGPもしくは流体的な解釈が可能な実験の解析手法を無意識に選んでしまっている可能性はないのか(そもそも何を以て物理的に"QGP"と考えるのか)。
- どれぐらい細かいスケールまで流体的な記述が良いのか?小さい系を流体で取り扱うとき、何処まで定量的なのか。
- small systemでQGPの生成の最近の理解、たとえばRpA~1の大きなpt領域での大きなv2は、AAにおけるエネルギーロスとは異なるだろうけど、pAでの理解。集団運動測定におけるnon flowの取扱い。
- small systemにおいて、次に何を実験的に測ればいいのか。
- small systemでもQGPが作られているか。作られていると解釈される場合、これまでの重イオン衝突実験の理解にどのような影響があるか。
- 小さい系でのQGP生成を詳細に調べることで熱化(流体化)時間を定量的に求めることはできるか?また熱化や流体化のメカニズムを実験的に検証することは可能か(長相関や電磁プローブ?)
- 小さい衝突系でdirect photonのフローの観測は期待できないのだろうか?
- 小さい系のフローが議論される際に、non flow subtractionが行われるが、例えばtemplate fitやlow multiplicityの subtractionなどさまざまな手法がある。もう少し系統的にその違いを知りたい。
- 小さい衝突系で見つかったフローの理解を反映させて、それまでの全ての原子核衝突実験の解析をもう一度行ったら何か質的に新しい事はあるのか?
- QGPを研究して何が嬉しいのかを非専門家に説明する際、よく「QGPで満たされていた初期宇宙について理解が進む」と説明していますが(そもそも初期宇宙のことがわかって何が嬉しいのでしょうか)、初期宇宙以外に何か非専門家に説明できるような嬉しい点はあるのでしょうか。あるいは一般に、QGPについて研究して何が嬉しいのでしょうか。

Heavy-Ion Physics Tutorial, small-system and flow, 20/Aug/2019, Riken

d+Au collisions Beam Energy Scan at RHIC-PHENIX (20 - 200 GeV) without non-flow subtraction

Heavy-Ion Physics Tutorial, small-system and flow, 20/Aug/2019, Riken