Type: poster presentation

Search for α clustering in 14 O

 α clustering is a well-known phenomenon in light nuclei where two neutrons and two protons strongly correlate to constitute an α particle as a building block of atomic nuclei. A linear alignment of the α clusters, referred to as linear-chain cluster state (LCCS), has been of great interest since 1950s but until now there is no clear experimental evidence demonstrating the existence of such a state. Recently, it was theoretically pointed out that excess nucleons in non-4N nuclei occupy molecular orbitals between α clusters and the excess nucleons may stabilize LCCS. A candidate of LCCS in 14 C was experimentally proposed by H. Yamaguchi et al. [1].

It is an interesting issue whether the similar LCCS also exists in the mirror nucleus 14 O or not. The excess neutrons are replaced by protons in this case, and thus the energy shifts between 14 C and 14 O due to the Coulomb force should reflect spatial distribution of the excess nucleons. Therefore, it is expected to reveal the structure of the LCCS candidate by measuring its energy in 14 O and comparing it with that in 14 C and theoretical calculation.

Since $^{14}{\rm O}$ is an unstable nucleus, it must be generated as a secondary particle. We conducted the experiment to search for α cluster states in $^{14}{\rm O}$ at CRIB facility of CNS, the Univ. of Tokyo in June 2019. In this experiment, we injected a $^{10}{\rm C}$ secondary beam at 36 MeV into the He gas target at 650 Torr, and measured the resonant elastic scattering of $\alpha+^{10}{\rm C}$ with the Si detectors at 0 and ± 9 degrees by the thick target method. We will report details of the experiment and results in the talk.

References

[1] H. Yamaguchi et. al. Experimental investigation of a linear-chain structure in the nucleus 14 C Phys.Lett.B, 766:11, 2017

Primary author: OKAMOTO, Shintaro (Dept. of Phys., Kyoto Univ.)

Co-authors: SAKAUE, Akane (Dep. of Phys. Kyoto Univ.); KOHDA, Asahi (RCNP, Osaka Univ.); MANICO, Gianluca (INFN); PIZZONE, Giulio (INFN); Mr SHIMIZU, Hideki (CNS, Univ. of Tokyo); YAMAGUCHI, Hidetoshi (Center for Nuclear Study, the University of Tokyo); INABA, Kento (Dep. of Phys. Kyoto Univ.); SAKANASHI, Kohsuke (Dep. of Phys. Osaka Univ.); COGNATA, Marco (INFN); SFERRAZZA, Michele (Université Libre de Bruxelles); MA, Nanru (Center for Nuclear Study); ITAGAKI, Naoyuki (YITP, Kyoto Univ.); DESCOUVEMONT, Pierre (Université Libre de Bruxelles); PALMERINI, Sara (INFN); HAYAKAWA, Seiya; CHERUBINI, Silvio (INFN); KAWABATA, Takahiro (Dep. of Phys. Osaka Univ.); DOI, Takanobu (Dep. of Phys. Kyoto Univ.); FUJIKAWA, Yuki (Dep. of Phys. Kyoto Univ.)

Presenter: OKAMOTO, Shintaro (Dept. of Phys., Kyoto Univ.)Session Classification: Poster Session by Young Scientists