Measurement of alpha resonance scattering on ^7Be

H. Yamaguchi, T. Hashimoto, S. Hayakawa, D.N. Binh, D. Kahl, S. Kubono, T. Kawabataa, Y. Wakabayashib, N. Iwasac, Y. Miurac, Y.K. Kwond, L.H. Khieme, N.N. Duye, and T. Teranishif

Center for Nuclear Study, Graduate School of Science, University of Tokyo
aDepartment of Physics, Kyoto University
bAdvanced Science Research Center, JAEA
cDepartment of Physics, Tohoku University
dDepartment of Physics, Chung-Ang University
eInstitute of Physics and Electronics, Vietnam Academy of Science and Technology
fDepartment of Physics, Kyushu University

A measurement of the $^7\text{Be}+\alpha$ elastic scattering was performed at CRIB [1, 2], to study the resonance structure of ^{11}C. The excited states of ^{11}C above the threshold for the α-particle decay are particularly of interest from the following points of view.

The first is on the astrophysical interest. The $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction is considered to play an important role in the hot p-p chain and related reaction sequences [3]. Several reaction sequences including the $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction should take place in some high-temperature environments ($T_\beta > 0.2$). One of those sequences is called pp-V,

$$^7\text{Be}(\alpha, \gamma)^{11}\text{C}(\beta^+\nu)^{11}\text{B}(p, 2\alpha)^4\text{He},$$

which are reaction chains to synthesize CNO nuclei without the triple-α process. The $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction and these sequences are considered to be important in the explosion of supermassive objects with lower metallicity [4], novae [5] and big-bang nucleosynthesis. The $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction rate is greatly affected by the resonances. At the lowest temperature, the reaction rate is determined by the subthreshold resonance at the excitation energy $E_{\text{ex}}=7.50$ MeV and the direct capture rate. The two resonances located at $E_{\text{ex}}=8.11$ MeV and $E_{\text{ex}}=8.42$ MeV determine the rate at high temperature around $T_\beta = 0.5-1$. Higher excited states may contribute to the reaction rates at very high temperature ($T_\beta > 1$).

Resonance states above 9 MeV were previously studied via $^{10}\text{B}(p, \alpha)$ and single-nucleon transfer reactions such as $^{12}\text{C}(p, d)^{11}\text{C}$ [6–9]. The resonances have typically widths of the order of 100 keV, but their α-decay widths are still not known with a good precision, and the spin and parity have not been clearly determined yet. The excited states at lower energies ($E_{\text{ex}}=8–9$ MeV) have narrower particle widths, and the α widths are unknown, except for the two resonances located at $E_{\text{ex}}=8.11$ MeV and $E_{\text{ex}}=8.42$ MeV. The $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction rate was directly measured only at the energies of these two resonances [10], and the resonance parameters including α widths were determined. That measurement is the only known direct measurement of the $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction.

The $3/2^-_1$ state in ^{11}C at $E_{\text{ex}}=8.11$ MeV is regarded as a dilute cluster state [11], where two α particles and ^3He are weakly interacting. Its exotic structure is attracting much attention [12]. The cluster structure in ^{11}B, the mirror nucleus of ^{11}C, was studied by measuring its isoscalar monopole and quadrupole strengths in the $^{11}\text{B}(d, d')$ reaction [13, 14]. As a result, they indicated that the mirror state of the 8.11-MeV state is considered to have a dilute cluster structure. It is also claimed that the large monopole strength for the $3/2^-_1$ state at $E_{\text{ex}}=8.56$ MeV in ^{11}B is an evidence of the $2\alpha + t$ cluster structure. If the $3/2^-_1$ state has a large deformation that arises from the developed cluster structure, a characteristic rotational band is expected to be formed. It is interesting to search for the rotational band built on the $3/2^-_1$ state in the present measurement.

In the present study, we used the $^7\text{Be}+\alpha$ resonant elastic scattering to observe α resonances. The strength of the resonances is expected to provide information on the α-cluster structure of ^{11}C, and on the astrophysical $^7\text{Be}(\alpha, \gamma)$ reaction rate. The measurement was performed using the thick target method in inverse kinematics [15] to obtain the excitation function for E_{ex} at 8.5–13.0 MeV in ^{11}C. The experimental setup is almost identical to the one used in the $^7\text{Li}+\alpha$ measurement [17]. A pure and intense ^7Be beam can be produced at CRIB using a cryogenic target [16]. In the present measurement, a low energy ^7Be beam at 14.7 MeV was produced using a 2.3-mg/cm2-thick hydrogen gas target, and a ^7Li beam at 5.0 MeV/µ. The purity of the ^7Be beam was almost 100% after the Wien filter. The typical ^7Be beam intensity used in the measurement was 2×10^5 per second at the secondary target, and the main measurement using a helium-gas target was performed for 4 days.

A Micro-Channel Plate (MCP) was used for the detection of the beam position and timing. A CsI-evapolated 0.7-µm-thick alminum foil was placed on the beam axis for the secondary electron emission. The secondary electrons were
reflected by 90° at a biased thin-wire reflector and detected at the MCP with a delay-line readout.

The gas target consisted of a 50-mm-diameter duct and a small chamber. Helium gas at 800 Torr was filled and sealed with a 2.5-μm-thick Havar foil as the beam entrance window. The helium gas was sufficiently thick to stop the 7Be beam in it. α particles recoiling to the forward angles were detected by the “ΔE-E detector”. The detector, consisting of 20-μm- and 490-μm-thick silicon detectors, was placed in the gas chamber. The distance from the beam entrance window to the detector was 250 mm. To measure 429-keV gamma rays from inelastic scattering to the first excited state of 7Be, NaI detectors were placed around the duct. We used ten NaI crystals, each with a geometry of 50 × 50 × 100 mm. They covered 20–60% of the total solid angle, depending on the reaction position.

Fig. 1 shows the energies of particles detected at the ΔE-E detector, in coincidence with the 7Be beam at the MCP. Most of the particles measured was α from the elastic scattering, and a small number of protons and deuterons were observed in the measurement. A measurement using an argon-gas target of the equivalent thickness was also performed to evaluate the background α particles as the contamination in the beam.

The calculation of the kinematics by taking into account the energy loss in the gas target provided the excitation energy of 11C from the measured energy of the α particle. The obtained energy spectrum of alpha particles is shown in Fig. 2. A structure with peaks, considered to be due to alpha resonances, was observed. An excitation function for the 7Be+α elastic scattering will be obtained in the future analysis. The resonance parameters to be determined in this study, such as the spin, parity and α width (related with the spectroscopic factor of the α-cluster configuration) would provide valuable information for the α-cluster structure in the high excited states, and astrophysical reaction rates in high-temperature phenomena.

References