Overview of
the RI Beam Facility (RIBF)

Daisuke Suzuki
Riken Nishina Center
daisuke.suzuki@ribf.riken.jp
+81-(0)48-467-4958
Laboratory on Earth

Modified from GenshikakuKenkyu Vol.56 Suppl.3
Recipe of RI beams: Four questions

- How to produce?
- How to accelerate?
- How to separate?
- How to identify?
Basic elements of ion-beam facility

Ion source

Acceleration

Transport

Ion source

Cathode

Cs+ focus

Ionizer

Extractor

Oven

http://www.pelletron.com/

Riken Ring Cyclotron

Layout of RARF (RIKEN Accelerator Research Facility)
ISOL (Isotope Separation On Line)

- Uranium fission (e^-, n)
- Spallation ($p \sim 1$ GeV)
- Light beam and heavy thick target
In-flight method

- Projectile fragmentation reaction
- Uranium fission
- Heavy beam and light thin target (Be, C)
RIBF (Radioactive Isotope Beam Factory)

- 3 injectors + 4 cyclotrons
- A variety of primary beam up to U
- Energy up to 345 MeV/nucleon

Primary target for RI beam production
World-leading producer of RI beam

As of June 2016

- RI beam Produced (416) for 125 Experiments
- Production Yield Measured (1481)
- New isotope 2011
- New isotope 2012
- New isotope 2013
- New isotope 2014
- New isotope 2015

238U In-flight fission

Courtesy Y. Shimizu
How to accelerate?

SRC (Superconducting Ring Cyclotron)

- K2500MeV
 - 345 MeV/nucleon for U beam
 - 400 MeV/nucleon for Light-ion beam
- Self magnetic shield
 - Up to 8 Tm

Diameter : 18.4m
Weight : 8,300 tons
Production of exotic nuclei at relativistic energies

Projectile Fragmentation

Nucleon-nucleon collisions, abrasion, ablation

\[\vec{V}_f \approx \vec{V}_p \]

Projectile Fission

Electromagnetic excitation, fission in flight

\[\vec{V}_f \approx \vec{V}_p + \vec{V}_\text{fission} \]

Sn isotope production

K. Sümmerer

EUROSCHOOL lectures 2011-08-24-25
BigRIPS: How to separate and identify?

Primary target for RI beam production

RIPS: precursor of BigRIPS

RIPS: T. Kubo et al., Nucl. Instr. Meth. B 70, 309 ('92)
1st stage selection

Momentum-dispersive focal plane

1st selection

\begin{align*}
qvB &= m \frac{v^2}{\rho} \\
\nu &= \nu_{\text{beam}} \text{ for all fragments} \\
ZevB &= Am_{\text{nucl}} \frac{v^2}{\rho} \\
B\rho &= \frac{A}{Z} \frac{p_{\text{nucl}}}{e}
\end{align*}
Isotope separation (stage1)
Between 1st and 2nd selections

Momentum-dispersive focal plane

Stopping range

\[R \approx k \frac{A}{Z^2} \left(\frac{E}{A} \right)^\gamma \]

\[\gamma = 1.75 \] (at intermediate beam energies)

\[= k' \frac{Z^{2\gamma-1}}{A^{2\gamma-2}} (B\rho)^{2\gamma} \]

Material

Degradation range

Primary beam from RRC

Secondary beams

Production target
Double-achromatic focal plane

\[B \rho_2 = B \rho_1 \left(1 - \frac{d}{R} \right)^{\frac{1}{2\gamma}} \]

\[= B \rho_1 \left(1 - \frac{d}{k'} \frac{A^{2\gamma-1}}{Z^{2\gamma-2}} (B \rho_1)^{2\gamma} \right)^{\frac{1}{2\gamma}} \]

\[\Rightarrow B \rho_2 \propto \frac{A^{2\gamma-1}}{Z^{2\gamma-2}} = \frac{A^{2.5}}{Z^{1.5}} \]
Isotope separation (stage 2)
BigRIPS configuration

Momentum-dispersive focal planes

Double-achromatic focal planes
Isotope separation

BigRIPS 1st stage
Particle identification

BigRIPS 2nd stage

TOF (time of flight): β

$B \rho$ with track reconstruction

$B \rho_{35}$

$B \rho_{57}$

TOF-Bρ-ΔE method

$$\frac{A}{Q} = \frac{B \rho}{\gamma \beta m_{\text{nucl}}} \frac{c}{\gamma \beta m_{\text{nucl}}}$$

$Z \leftarrow \Delta E = f(Z, \beta)$

Bethe-Bloch formula
Example of PID plot

$^{238}\text{U} + \text{Be} (5\text{mm})$ at 345 MeV/nucl, F1-slit: $\pm 2\text{mm}$, Brho: ^{76}Ni

Time of Flight (F3-F7) [ns] vs. ΔE at F7 [MeV]
Different physics require ...

- Shape coexistence
- Configuration Mixing
- Exotic decay mode (e.g. 2-p decay)
- p-n pairing
- Proton drip line
- Neutron drip line
- New magic number
- Island of inversion
- Nuclear force
- Fission Cluster decay
- Explosive nucleosynthesis
- 2-n correlation BEC BCS
- Multi-neutron halo
Different observables

- Mass
- Excitation energy
- Half-life
- Decay scheme
- Transition strength
- Charge distribution
- Cross sections
- Matter distribution
- Nuclear moment
- Charge radius
- Nuclear EOS
- Matter distribution
And different devices
ZDS (Zero-Degree Spectrometer)
ZDS (Zero-Degree Spectrometer)

Spectrometer for in-beam gamma-ray measurement

\[^{132}\text{Sn} \]

From BigRIPS

Grape (Ge detectors): S. Shimoura, Nucl. Instr. Meth. B 525, 188 (’04)

DALI2 (NaI scintillators): S. Takeuchi et al., Nucl. Instr. Meth. B 763, 596 (’14)
Evidence for a new nuclear ‘magic number’ from the level structure of 54Ca

D. Steppenbeck1, S. Takeuchi2, N. Aoi3, P. Doornenbal2, M. Matsushita1, H. Wang2, H. Baba2, N. Fukuda2, S. Go1, M. Honma4, J. Lee2, K. Matsui5, S. Michimasu1, T. Motobayashi2, D. Nishimura6, T. Otsuka1,5, H. Sakurai2,5, Y. Shiga7, P.-A. Söderström3, T. Sumikama8, H. Suzuki2, R. Taniuchi5, Y. Utsuno9, J. J. Valiente-Dobón10 & K. Yoneda2

55Sc/56Ti on a 1.85 g/cm2 Be target

40 hours of data taking

\[E_x \text{ [MeV]} \]

ISOLDE ('85)
Minos (Maglc Numbers Off Stability)

Thick hydrogen target for in-beam γ-ray spectroscopy

- 1 g/cm² liquid hydrogen target
- Dopper-shift correction by locating vertex using a TPC (Time Projection Chamber)

A. Obertelli et al., Eur. Phys. J. A 50, 8 ('14)
“Island of Inversion” at $N = 40$

Eurica (EUroball RIken Cluster Array)

β-delayed γ-ray spectroscopy station at the end of ZDS

- 84 high-purity Ge crystals in 12 clusters
 - Resolution: 2.5 keV @1.3MeV
 - Efficiency: 13% @1MeV

- 8 double-sided strip silicon detector (DSSD)
 - 60 × 40 pixels
 - Detect β-ray from implanted radioactive nuclei
40 new half-lives!

Better understanding of r-process abundance

SAMURAI (Superconducting Analyzer for MUlti-particle from RAdioIsotope beams)
SAMURAI (Superconducting Analyzer for Multi-particle from RadioIsotope beams)

$^{27}\text{F} + \text{C} \rightarrow ^{26}\text{O} \rightarrow ^{24}\text{O} + 2n$

$^{27}\text{F} \sim 210\text{MeV/u (from BigRIPS)}$

First 2^+ state of unbound ^{26}O

- USDB cannot reproduce the 2^+ energy of ^{26}O
- Effect of pf shell? and/or continuum? Or other effects (such as 3N forces, 2n correlation)

SPiRIT

SAMURAI Pion Reconstruction and Ion Tracker

Nuclear equation of state via π^+/π^- production ratio in heavy RI collision

R. Shane et al., Nucl. Instr. Meth. A 784, 513 (’15)
$^{132}\text{Sn} @ 300 \text{ MeV/u} + ^{\text{nat.}}\text{Sn} (\text{May '05})$

$\pi^- \quad \pi^+ \quad p \quad d \quad t$

$dE/dX (\text{A.U.}) \quad p/Q (\text{MeV/c})$

Track reconstruction
Spectroscopy with High-resolution Analyzer of RadioActive Quantum beams
SHARAQ

Spectroscopy using RI beam as a reaction probe

T. Uesaka et al., Nucl. Instr. Meth. B 266, 4218 ('08)
T. Uesaka, S. Shimoura, and H. Sakai, Prog. Theor. Exp. Phys. 03C007 ('12)
Neutral nucleus ‘tetra-neutron’ candidate

R3 (Rare RI Ring)
R3 (Rare RI Ring)

Mass measurement in an ‘isochronous’ storage ring

\[f_c = \frac{1}{2\pi} \frac{qB}{m} \]
SLOWRI

Slow (1 to 50 keV) and low emittance (∼πmm·rad) beam for trapping and laser spectroscopy

M. Wada et al.
MRTOF @ GARIS-II for SHE-Mass project

FIG. 3: Time-of-flight spectrum observed using 165Ho target. Ions made n=148 laps in the MRTOF-MS. See text for details

<table>
<thead>
<tr>
<th>Species</th>
<th>ρ'</th>
<th>Mass Excess [keV]</th>
<th>Δm [keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>201Bi</td>
<td>0.9803821(20)</td>
<td>-21450(385)(3)</td>
<td>-35(385)(3)</td>
</tr>
<tr>
<td>203Po</td>
<td>0.98040785(39)</td>
<td>-16541(74)(3)</td>
<td>-16(74)(3)</td>
</tr>
<tr>
<td>201At</td>
<td>0.98043619(23)</td>
<td>-11131(44)(3)</td>
<td>-342(45)(3)</td>
</tr>
<tr>
<td>205Po</td>
<td>0.99990(10)</td>
<td>-18567(2050)</td>
<td>-1059(2050)</td>
</tr>
<tr>
<td>205At</td>
<td>0.999939(22)</td>
<td>-12898(420)</td>
<td>73(420)</td>
</tr>
<tr>
<td>205Rn</td>
<td>0.999967(16)</td>
<td>-7502(320)</td>
<td>212(320)</td>
</tr>
<tr>
<td>206At</td>
<td>1.004819(11)</td>
<td>-12497(2150)(1)</td>
<td>-9(2150)(1)</td>
</tr>
<tr>
<td>206Rn</td>
<td>1.0048400(30)</td>
<td>-8565(600)(1)</td>
<td>551(600)(1)</td>
</tr>
<tr>
<td>206mFr</td>
<td>1.00487892(55)</td>
<td>-1150(107)(1)</td>
<td>-98(118)(1)</td>
</tr>
</tbody>
</table>

May be 206mFr, with deviation from literature of $\Delta m=-92(111)(1)$ keV

P. Schury et al., submitted
Construction will be completed in March 2017
From BigRIPS

$^{132}\text{Sn} \times 2.5 \times 10^6$ pps

RF cavity for smaller beam spot

200-250 MeV/u

Beam spot 20~30 mm FWHM

5 ± 1 MeV/u

1.7×10^5 pps

5 to 50 MeV/u RI beam for direct reactions

To SHARAQ

50 MeV/u

<20 MeV/u
SCRIT (Self Confining RI Ion Target)
SCoRT (Self Confining RI Ion Target)

Electron scattering off RI beam

M. Wakasugi et al., Nucl. Inst. Meth. A 532, 216 ('04)
M. Wakasugi et al., Phys. Rev. Lett. 100, 164801 ('08)
T. Ohnishi et al., Phys. Scr. T166, 014071 ('15)
CRIB (CNS Radio-Isotope Beam separator)
CRIB (CNS Radio-Isotope Beam separator)

Low-energy RI beams (<10MeV/u) for astrophysical reactions
Direct measurement of 11C(α,p) reaction

A reaction that bypasses the 3\(\alpha\) process in explosive hydrogen-burning

KISS (KEK ISotope Separator)
KISS (KEK ISotope Separator) RI beam with $N = 126$ for unexplored r-process path

H. Grawe et al., Rept. Prog. Phys. 70, 1525 (’07)

Y. Hirayama et al., Nucl. Instr. Meth. B 353, 4 (’15)

Multiple nucleons transfer reaction

Laser
Resonance ionization (Element selection)

136Xe beam
198Pt target
Ar gas
Measurement of 199Pt

Hyper-fine structure of 199Pt

$\mu = +0.63(13) \mu_N$

$F_{gs} = 9/2$

$F_{gs} = 11/2$

$F_{gs} = 7/2$

$F_{gs} = 5/2$

$F_{gs} = 3/2$

$F_{gs} = 1/2$
GARIS (GAs-filled Recoil Ion Separator)
GARIS (GAs-filled Recoil Ion Separator)

Search for super heavy elements
Nihonium (Nh) currently under public review

For Release 8 June 2016

IUPAC is naming the four new elements nihonium, moscovium, tennessine, and oganesson

Following earlier reports that the claims for discovery of these elements have been fulfilled [1, 2], the discoverers have been invited to propose names and the following are now disclosed for public review:

* Nihonium and symbol Nh, for the element 113,
* Moscovium and symbol Mc, for the element 115,
* Tennessine and symbol Ts, for the element 117, and
* Oganesson and symbol Og, for the element 118.

The IUPAC Inorganic Chemistry Division has reviewed and considered these proposals and recommends these for acceptance. A five-month public review is now set, expiring 8 November 2016, prior to the formal approval by the IUPAC Council.