Development of a Radio Frequency Dipole Mass Filter for the Francium Permanent Electric Dipole Moment Search

Mirai Fukase, Hiroki Nagahama^(a), Keisuke Nakamura^(a), Naoya Ozawa, Motoki Sato^(b,c), Shintaro Nagase, Teruhito Nakashita^(b,c), Daisuke Uehara, and Yasuhiro Sakemi^(a)

> Graduate School of Science, University of Tokyo, (a)Center for Nuclear Study, University of Tokyo, (b) Graduate School of Arts and Sciences, University of Tokyo, (c) RIKEN Nishina Center

Purpose of this study: Increasing efficiency of various components and N by **improvement of Fr beam purity** →Development of a Radio Frequency Dipole Mass Filter & Simultaneous Beam Diagnostic System

Simultaneous real-time measurement of beam current & decay alpha radiation of isotopes in the beam.

Black lines indicate simulated values of transmittance.

160kHz

current Ratio(Rb:0A, Ih~21nA, Ia~16r

Current Ratio(Rb:4.5A, I, ~53nA, I, ~72

Current Ratio(Rb:4.5A | ~336nA | ~332n

Current Ratio(Rb:5.0A, I_b~347nA, I_a~308nA

Amplitude(V)

 $= 0.22 \pm 0.01$

 $-\hat{C}(t)$

Schematic Drawing of SBDS.

Gold foil was used for shielding the silicon detector(SSD) from infrared heater light.

Rb offline experiment

Current Ratio(Rb:0A, Ih~13nA, Ih~12nA

Current Ratio(Rb:4.5A, IL~344nA, IL~337n/

Current Ratio(Rb:5.0A, I_b~251nA, I_a~217nA)

120 kHz

Radio Frequency Dipole Mass Filter

- > ²¹⁰Fr beam intensity < 5 × 10⁶ /s
 - **VS** All beam intensity $\sim 10^{10} 10^{11}$ /s (beam current ~ 10 nA)
- Beam impurities cause contamination of yttrium surface.

 \rightarrow Loss of reproducibility.

Decline of neutral Fr production efficiency. Deterioration of MOT chamber vacuum.

> Radio Frequency Dipole Mass Filter Apply an oscillating voltage of opposite phase to the pair of "Takefune" electrodes.

Top view

Mass separation of low-energy beam in a compact space

Mass-to-charge ratio spectrum of the beam obtained from a similar experiment at Tohoku University[4]

140kHz

Current Ratio(Rb:0A, I_b~15nA, I_a~13nA)

Current Ratio(Rb:4.5A, I,~76nA, I,~176nA)

Current Ratio(Rb:5.0A, I_b~303nA, I_a~252nA)

[4] Hirokazu Kawamura *et al.*, Rev. Sci. Instrum. **87**, 02B921 (2016)

Conclusion \succ Qualitative evaluation showed an improvement in apparent beam purity. \blacksquare Proof of principle. & Outlook > Further improvement of beam purity requires modification of the beam transport system.