Large-scale shell-model study of two-neutrino double beta decay in ⁸²Se

by

Deepak Patel (IIT Roorkee)

Supervisor: Prof. P. C. Srivastava (Associate Professor, Department of Physics, IIT Roorkee)

A3F-CNSSS23 Young Scientist Session, 7 August 2023

Introduction

- Double-beta decay (DBD) is the rarest radioactive weak interaction process and first introduced by Mayer as a nuclear disintegration.
- It can be classified by two major decay modes: two-neutrino (2v) and neutrinoless (0v) double beta decay.

The observation of $2\nu\beta\beta$ decay provides experimental evidence of the standard model of particle physics.

Continued...

Figure: Mass parabola for isobaric nuclei with even atomic mass number.

Formalism

> The half-life for the $2\nu\beta\beta$ decay can be expressed as follows:

$$t_{1/2}^{2\nu} = \frac{1}{G^{2\nu}g_A^4|M_{2\nu}|^2},$$

where $G^{(2\nu)}$ is the phase-space factor and g_A corresponds to axial-vector coupling strength. The nuclear matrix element (NME) $M_{2\nu}$ for $2\nu\beta\beta$ decay is given by

$$M_{2\nu} = \sum_{k} \frac{\langle 0_{g.s.}^{(f)} || \sigma \tau^{\pm} || 1_{k}^{+} \rangle \langle 1_{k}^{+} || \sigma \tau^{\pm} || 0_{g.s.}^{(i)} \rangle}{[\frac{1}{2}Q_{\beta\beta} + E(1_{k}^{+}) - M_{i}]/m_{e} + 1},$$

where m_e is the rest mass of the electron; $E(1_k^+) - M_i$ is the energy difference between the k^{th} intermediate 1^+ state and the g.s. of the initial nucleus; $0_{g.s.}^i(0_{g.s.}^f)$ is the g.s. of initial (final) nuclei; σ is the pauli matrix; $\tau^-(\tau^+)$ is the isospin lowering (raising) operator. $Q_{\beta\beta}$ (*Q*-value) is the energy released in the decay.

> The reduced matrix element $\langle 0_{g.s.}^{(f)} \| \sigma \tau^{\pm} \| 1_k^+ \rangle$ (or $\langle 1_k^+ \| \sigma \tau^{\pm} \| 0_{g.s.}^{(i)} \rangle$) can be expressed as:

$$\langle J_f \| \sigma \tau^{\pm} \| J_i \rangle = \sum_{j_f j_i} \sqrt{3(2j_f + 1)} \delta_{l_i l_f} U(l_i s_i j_f 1, j_i s_f) D_{j_f j_i}.$$

Here, $U(l_i s_i j_f 1, j_i s_f)$ is the U coefficient, and j_i , l_i , and s_i (j_f , l_f , and s_f) are the total angular momentum, orbital angular momentum, and spin of initial (final) nucleonic state, respectively. $\delta_{l_i l_f}$ shows that for the allowed Gomow-Teller transition, the orbital angular momentum of the initial and final state nucleons must be equal.

> The one-body transition densities $D_{j_f j_i}$ can be expressed as:

$$D_{j_f j_i} = \frac{\langle f || a_{j_f}^{\dagger} a_{j_i} || i \rangle}{\sqrt{2\delta_j + 1}},$$

where $a_{j_f}^{\dagger}(a_{j_i})$ is nucleon-creation (annihilation) operator, and δ_j represents the changing of the angular momentum.

The shell-model studies have been conducted using jun45 interaction for the study of $2\nu\beta\beta$ decay in ⁸²Se. This interaction consists of the $0f_{5/2}1p0g_{9/2}$ proton and neutron orbitals.

Phys. Rev. C 80, 064323 (2009)

IIT ROORKEE 8/12 **Results**

Figure: Cumulative $2\nu\beta\beta$ NME ($M_{2\nu}$) for ⁸²Se as a function of excitation energy (in MeV) of the intermediate 1⁺ states in ⁸²Br.

$$t_{1/2}^{2\nu} = \frac{1}{G^{2\nu}g_A^4|M_{2\nu}|^2}, \qquad M_{2\nu} = \sum_k \frac{\langle 0_{g,s.}^{(\ell)} \| \sigma \tau^{\pm} \| 1_k^* \rangle \langle 1_k^* \| \sigma \tau^{\pm} \| 0_{g,s.}^{(\ell)} \rangle}{[\frac{1}{2}Q_{\beta\beta} + E(1_k^*) - M_i]/m_e + 1}$$

Table: Shell-model calculated $2\nu\beta\beta$ NMEs and the extracted half-life for ⁸²Se.

Isotope	$ M_{2\nu} $	$G^{2 u}$ (yr $^{-1}$)	g_A^{eff}	Calculated $t_{1/2}^{2\nu}$ (yr)	Experimental/Recommended (Average) value of $t_{1/2}^{2\nu}$ (yr)
⁸² Se	0.1713	150.31×10 ⁻²⁰	0.76	0.68×10 ²⁰	$0.87^{+0.02}_{-0.01}\times10^{20}$

- > Adv. High Energy Phys. 2016, 7486712 (2016).
- ➤ Front. Phys. 5, 55 (2017).
- ➤ Universe 6, 159 (2020).

> In the present work, large-scale shell-model calculation was carried out for the study of $2\nu\beta\beta$ -decay of the medium-mass nucleus ⁸²Se.

> The cumulative $M_{2\nu}$ curve shows that it saturates after a particular intermediate 1⁺ state.

> The calculated half-life of $2\nu\beta\beta$ -decaying nucleus ⁸²Se is in good agreement with the experimental data.

I thank my supervisor **Prof. Praveen C. Srivastava** (IIT Roorkee), and I am also grateful to the National Supercomputing Mission (NSM) for providing computing resources of 'PARAM Ganga' at the Indian Institute of Technology Roorkee for my calculations.

Financial support: MHRD, the Government of India, and SERB (India), CRG/2022/005167.

Thank You for your attention!