MEASUREMENT OF THE ¹¹B TARGET THICKNESS BY USING THE ELASTIC SCATTERINGS WITH PROTON PARTICLES OF 1.1 - 1.9 MeV ENERGY

The 22nd CNS International Summer School (A3F-CNSSS23)

DO THI KHANH LINH¹, LE XUAN CHUNG¹, M. LA COGNATA², TRAN THE ANH³, NGUYEN TUAN ANH⁴, MAI VAN DIEN¹, BUI THI HOA³, PHAM DUC KHUE¹, M. SFERRAZZA⁵, NGUYEN THE NGHIA³, G.G. RAPISARDA⁶, AND TRAN DINH TRONG⁷

¹Institute for Nuclear Science and Technology, VINATOM, 179 Nghia Do, Hanoi, Vietnam;
 ²Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy
 ³Hanoi University of Science, Vietnam National University;
 ⁴Hanoi Irradiation Center, VINATOM;
 ⁵Université Libre de Bruxelles, Bruxelles, Belgium;
 ⁶University of Catania, Catania, Italy;
 ⁷Institute of Physics, Vietnam Academy of Science and Technology

- I. Motivation and overview
- II. Experimental setup
- III. Results and discussion
- **IV.** Conclusions

Motivations

□ Thickness of target is an essential information to determine absolute cross sections

M.Munch et al., EPJ/A,56,17,2020

□ The formula of the differential cross section reaction:

$$\frac{d\sigma}{d\Omega} = \frac{Y}{N_t \cdot N_p \cdot \Delta\Omega} \tag{1}$$

Where Y - the number of scattered particles and corresponds to the experimental yield,

 N_t – the number of target nucleus, proportional to the target thickness

 N_p - the number of the incident beam particles,

 $\Delta \Omega$ - the solid angle subtended by the detector located at the angle θ_{lab}

Target thickness measurement techniques

□ Measurement the energy loss of the charged particle in the target:

- Widely used to measure target thickness
- But insensitive to the elemental composition of the target
- And requires the knowledge of the stopping power of the material

□ Measurement of the width of resonance from the yield of gamma-ray:

Applicable only to a selected class of nuclei

□ Measurement of the elastically scattered light projectiles

Requires the knowledge of the elastic scattering cross section.

K. Ramavataram, D.I. Porat, Nucl. Instr. and Meth. 4 (1959) 239 **V.E. Lewis**, Nucl. Instr. and Meth. 64 (1968) 293.

C. Pruneau *et al.*, Can. J. Phys. **63** (1985) 1141

R.K. Jolly and H.B. White, Jr., Nucl. Instr. and Meth. 97 (1971) 299. **B.L. Cohen and R.A. Moyer,** Anal. Chem. 43 (1971) 123.

Elastic scattering method

 \Box The thickness of target (gram per cm²) is calculated as:

where N_t is the number of target nucleus, M_A is the molecular weight of the target element, Y is the experimental yield, $\frac{d\sigma}{d\Omega}$ is the cross section, $\Delta\Omega$ - the solid angle, N_A is the Avogadro constant.

 \rightarrow If $\frac{d\sigma}{d\Omega}$ is known, the thickness d is determined

R.K. Jolly, H.B. White, *Nucl. Instr. and Meth.*, **97**(2), 1971, 299-307.

Elastic scattering method

 \Box The thickness of target (gram per cm²) is calculated as:

where N_t is the number of target nucleus, M_A is the molecular weight of the target element, Y is the experimental yield, $\frac{d\sigma}{d\rho}$ is the cross section, $\Delta \Omega$ - the solid angle, N_A is the Avogadro constant. R.K. Jolly, H.B. White, \rightarrow If $\frac{d\sigma}{d\Omega}$ is known, the thickness d is determined Nucl. Instr. and Meth., 97(2), 1971, 299-307.

1/ For heavy targets, at low beam energy, the Rutherford backscattering is used to determine thickness CROSS

Elastic scattering method

 \Box The thickness of target (gram per cm²) is calculated as:

where N_t is the number of target nucleus, M_A is the molecular weight of the target element, Y is the experimental yield, $\frac{d\sigma}{d\rho}$ is the cross section, $\Delta \Omega$ - the solid angle, N_A is the Avogadro constant. R.K. Jolly, H.B. White, \rightarrow If $\frac{d\sigma}{d\theta}$ is known, the thickness d is determined

Nucl. Instr. and Meth., 97(2), 1971, 299-307.

5

1/ For heavy targets, at low beam energy, the Rutherford backscattering is used to determine thickness

The experiment setup proposal

Table 1: The parameters setup				
Channel reaction	$^{11}B(p, p_0)^{11}B$			
Object measured	The target thickness			
Target material	Enriched boron target (99% ¹¹ B)			
Target thickness (from supplier)	74 μ g/cm ² boron layer + 4 μ g/cm ² formvar substrate			
Proton energy	1.1 – 1.9 MeV			
Beam spot	3.3 mm diameter			
Beam intensity	$\approx 40 \text{ nA}$			
Out-going angles	160°			
Distance detector – target (R)	6.4 cm			
Collimator of detector (r)	0.4 cm radius			

The proton beam was accelerated by Pelletron 5 SDH-2 accelerator

Ion sources:

- NEC RF Charge Exchange Ion Source (Alphatross)
- Negative Ions by Cesium Sputtering (SNICS).

□ Available beams: 1 H(p)(RF, SNICS), 2 H(d)(RF), 4 He(α)(RF), 6,7 Li(SNICS), 10 B(SNICS) ...

Proton beam:

- $E_p = 0.8 3.4 \text{ MeV}$
- Intensity: 1-1000 nA
- RF Alphatross, SNICS

https://maygiatoc.com/

Si PIN photodiode S3590-09 for the charged particles detection

(*) https://www.hamamatsu.com/jp/en/product/optical-sensors/photodiodes/si-photodiodes/S3590-09.html

(*)

Faraday cup for beam monitoring

boron target from Beijing Normal University

(*) M. V. Dien, et al, "A study of Faraday Cup to measure beam intensity on accelerators", [Presentation] The 7th Young Staff Nuclear Science and Technology, 2022

Ratio of beam intensity measured in FC cup and FC of accelerator^{*} 9

Experimental results

Determination of target thickness

The target thickness d (in g/ cm^2):

$$d = \frac{N_t \cdot M_A}{n_A \cdot N_A} = \frac{Y \cdot M_A}{\frac{d\sigma}{d\Omega} \cdot N_p \cdot \Delta\Omega \cdot n_A \cdot N_A}$$

Where

Y: the experimental yield,

 N_t : the number of target nucleus/ the target thickness $\frac{d\sigma}{d\Omega}$: the differential cross section of ¹¹B(p, p₀) reaction

 N_p : the number of impinging protons, n_A: the enrichment of target (99%), ΔΩ: the solid angle subtended by the detector.

Experimental target thickness

Table 2: the ¹¹B target thickness (d) determined from $p+^{11}B$ elastic scatterings at different proton energies

	d (μg/cm ²)					
E _p (MeV)	Using cross sections from [a]	Using cross sections from [b]	Average	From the supplier		
1.1	62.27 (400)	65.41 (352)	61.50 (355)			
1.3	61.13 (413)	64.27 (347)				
1.5	61.46 (421)	61.90 (334)		74		
1.7	58.69 (317)	61.82 (333)				
1.9	58.31 (314)	59.74 (322)				

[a] M. Chiari *et al.*, *NIM B*, **184**(3), 2001, Pages 309-318.
[b] R. E. Segel *et al*, *Physical Review* **139**, B818 –1965.

Experimental target thickness

Table 2: the ¹¹B target thickness (d) determined from $p+^{11}B$ elastic scatterings at different proton energies

	d (μg/cm ²)			
E _p (MeV)	Using cross sections from [a]	Using cross sections from [b]	Average	From the supplier
1.1	62.27 (400)	65.41 (352)		
1.3	61.13 (413)	64.27 (347)		
1.5	61.46 (421)	61.90 (334)	61.50 (355)	74
1.7	58.69 (317)	61.82 (333)		
1.9	58.31 (314)	59.74 (322)		

• 17% lower than the value provided by the supplier

Strongly depend on the cross section, and the FC readout

[a] M. Chiari *et al.*, *NIM B*, **184**(3), 2001, Pages 309-318.
[b] R. E. Segel *et al*, *Physical Review* **139**, B818–1965.

Conclusions and future perspectives

□ The ¹¹B target thickness was measured by using the elastic scattering of proton beam.

 \Box The thickness of 61.50 (355) µg/cm² was obtained, about 17 % lower than that provided by the supplier.

□ The accuracy of the thickness is highly dependent on the available elastic scattering cross-section and the FC readout.

 \Box To improve the latter, a well-known experiment (e.g. the p+¹⁹⁷Au elastic scattering) is being carried out to

calibrate for the FC readout to overcome the charge collection problem.

Thank you for your attention!

Back-up slides

- Integrated beam charge of 14 μ C \rightarrow N_p = 8.73 x 10¹³ particles

-Solid angle $\Delta \Omega = \frac{\pi \cdot r^2}{R^2} = \frac{\pi \cdot 0.4^2}{6.4^2} = 0.01227 \text{ sr}$

Elastic scattering of proton from ¹⁹⁷Au

A factor of 1.08 - 1.18 for the discrepancy