Production of Np isotopes from ${ }^{238} \mathrm{U}$ beam at BigRIPS

Chihaya Fukushima
Tokyo City University
RIKEN Nishina Center

Introduction

Property of Neptunium(Np)

- Np is atomic number $Z=93$ after uranium (U)
- Np does not exist naturally in nature and can be produced artificially. (but Np may be produced in uranium mine as a natural reactor in Oklo, Africa)

Fig.1: Periodic Table.

Introduction

Np generation pathway

- Np can be produced by nuclear reactions in reactors and atomic bombs.
- Radioactive waste from nuclear power generation and ${ }^{237} \mathrm{~Np}$ has a half-life of 2.14 million years.

Production of Np is important

Fig.2: Np generation pathway. Neutron

In this experiment, Np is produced by the reaction including proton capture.

Introduction

Generation of Np beams

All RIs from hydrogen (H) to U can be supplied as a secondary beam at RIBF in RIKEN.
There are plans to use ${ }^{237} \mathrm{~Np}$ as a beam at RIKEN. The plan is not only be a solution to the nuclear waste problem, but would also lead to the discovery of new nuclei.

We want to make a beam over U. Let's make a beam with Np!

GSI

Recently, isotopes of ${ }^{234-238} \mathrm{~Np}$ can be created by a proton pick up reaction on $1 \mathrm{GeV} / \mathrm{u}{ }^{238} \mathrm{U}$ at GSI[1].

Experiment

4

Secondary beam
$\underset{238 \mathrm{U}^{86+}}{345 \mathrm{MeV} / \mathrm{u}}$ including Np

Data Analysis

Particle identification was performed by using TOF-Bp- ΔE method. The relative resolution of high Z region was 0.43% with Xe gas IC and A / Q was 0.0057%.

There are Pa and U around Np

The number of Np was counted by using three-dimensional fitting.

Results

6

nuclide	counts	transmission(\%) production [mb]	EPAX2.15 [mb]
${ }^{237} \mathrm{~Np}$	3.9×10^{3}	0.96	0.263
${ }^{238} \mathrm{~Np}$	1.1×10^{3}	$\bigcirc 0.81 \quad 0.038$	0.265
${ }^{232} \mathrm{~Pa}$	1.2×10^{5}	70.85 - 17	9.37
${ }^{233} \mathrm{~Pa}$	8.8×10^{4}	0.837 - 16	8.27
${ }^{234} \mathrm{U}$	7.5×10^{4}	0.34 - 12	24.7
${ }^{235} \mathrm{U}$	9.3×10^{4}	0.74 - 16	25.8
${ }^{236} \mathrm{U}$	8.9×10^{4}	4.16	26.3

