Production of Np isotopes from ²³⁸U beam at BigRIPS

Chihaya Fukushima *Tokyo City University RIKEN Nishina Center*

Property of Neptunium(Np)

- Np is atomic number Z = 93 after uranium (U)
- Np does not exist naturally in nature and can be produced artificially.
 (but Np may be produced in uranium mine as a natural reactor in Oklo, Africa)

Fig.1: Periodic Table.

Introduction

Np generation pathway

- Np can be produced by nuclear reactions in reactors and atomic bombs.
- Radioactive waste from nuclear power generation and ²³⁷Np has a half-life of 2.14 million years.

In this experiment, Np is produced by the reaction including proton capture.

Introduction

Generation of Np beams

All RIs from hydrogen (H) to U can be supplied as a secondary beam at RIBF in RIKEN.

There are plans to use ²³⁷Np as a beam at RIKEN. The plan is not only be a solution to the nuclear waste problem, but would also lead to the discovery of new nuclei.

We want to make a beam over U. Let's make a beam with Np!

GSI

Recently, isotopes of ²³⁴⁻²³⁸Np can be created by a proton pick up reaction on 1GeV/u ²³⁸U at GSI[1].

[1] E. Casarejos et al., Phys. Rev. C 74, 044612(2006).

Experiment

Data Analysis

Particle identification was performed by using TOF- $B\rho$ - ΔE method. The relative resolution of high Z region was 0.43% with Xe gas IC and A/Q was 0.0057%.

There are Pa and U around Np

The number of Np was counted by using three-dimensional fitting.

Results

nuclide	counts	transmission(%)	production [mb]	EPAX2.15 [mb]
²³⁷ Np	3.9×10^{3}	0.96	0.77	0.263
²³⁸ Np	1.1×10^{3}	0.81	0.038	0.265
²³² Pa	1.2×10^{5}	0.85	• 17	9.37
²³³ Pa	8.8×10^{4}	0.83	16	8.27
²³⁴ U	7.5×10^{4}	0.34	12	24.7
²³⁵ ၂	9.3×10^{4}	0.74	16	25.8
²³⁶ U	8.9×10^{4}	4.16	38	26.3