



## Dark matter effect on the neutron star equation of state

The 22nd CNS International Summer School (A3F-CNSSS23)

7<sup>th</sup> Aug. 2023, Nishina Hall, RIKEN

Jubin Park collaborator : Prof. Myung-Ki Cheoun

References: 1. JCAP10(2021)086 (ArXiv ePrint: 2104.01540), Wasif Husain and A. W. Thomas <u>https://doi.org/10.1088/1475-7516/2021/10/086</u> 2. PRD 96, 083004 (2017), Grigorios Panotopoulos and Ilidio Lopes 3. ``THE RELATIVISTIC NUCLEAR MANY-BODY PROBLEM ", Brian D. Serot and John Dirk Walecka

## Content

- Brief introduction about the dark matter and Higgs particle
- Model setup in particular, Higgs and fermionic dark matter
- Equation of State(EOS) of hadronic matter without dark matter
- EOS with dark matter
- M versus R
- Conclusion

https://chandra.harvard.edu/resources/illustrations/darkmatter.html

## ENERGY DISTRIBUTION OF THE UNIVERSE



**NORMAL MATTER** 

#### Why do we need the dark matter ?

• Dark Matter in the CMB temperature perturbation











MeV,

lead to an additional energy-loss mechanism, if capable of escaping the system.

## Dark Matter Effects inside Compact Stars



(Energy-Production Mechanism)



DM annihilation can even have fueled early stages of stellar evolution, perhaps with measurable consequences

## Higgs particle in the Standard Model (SM)

- Higgs field (h) : responsible for 1) the spontaneous EW symmetry breaking (2) the generation of masses of all the SM particle
- The potential is characterized by **only two parameters** : (1) vacuum expectation value  $\boldsymbol{v}$ 
  - (2) the Higgs mass  $m_H$

$$\boldsymbol{v} = \frac{1}{\sqrt{\sqrt{2} \, \boldsymbol{G}_F}} \approx 246 \, \text{GeV} \qquad V_{SM}(h) = \frac{1}{2} \, m_H^2 \, h^2 + \,\lambda_3 \, v \, h^3 + \frac{1}{4} \, \lambda_4 \, h^4$$

## Higgs trilinear and quartic self-coupling

$$\lambda_3^{SM} = \lambda_4^{SM} = \frac{m_H^2}{2 \nu^2}$$

New Physics can affect the Higgs potential form



Sizeable departures from the SM form

$$\lambda_3 = \lambda_3^{SM} + \delta \lambda_3^{SM} , \qquad \lambda_4 = \lambda_4^{SM} + \delta \lambda_4^{SM}$$

## Measuring the Higgs self coupling

## Examine the Higgs potential



 $\lambda_3 = \lambda_3^{SM} + \delta \lambda_3^{SM}$ 

## Model setup

 Relativistic Mean Field Model (called Quantum Hydrodynamic s, QHDI)

$$\mathcal{L}_{\text{had}} = \bar{\psi}(i\gamma_{\mu}\partial^{\mu} - m_{N} + g_{s}\phi + g_{v}\gamma^{\mu}V_{\mu})\psi$$

$$+ \frac{1}{2}(\partial_{\mu}\phi\partial^{\mu}\phi - m_{s}^{2}\phi^{2}) - \frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}m_{\omega}V_{\mu}V^{\mu}$$

$$m_{\omega} = 783 \text{ MeV}$$

$$g_{s}^{2} = 109.6$$

$$g_{v}^{2} = 190.4$$

 $m_N \simeq 1 \text{ GeV}$ 

## Higgs coupling and fermionic dark matter

$$\mathcal{L} = \mathcal{L}_{\text{had}} + \bar{\chi}(i\gamma_{\mu}\partial^{\mu} - M + yh)\chi + \frac{1}{2}\partial_{\mu}h\partial^{\mu}h - V(h) + \frac{fm_{N}}{v}\bar{\psi}h\psi$$

a DM mass M = 200 GeV  $M_h = 125 \text{ GeV}$ Fermionic dark matter

A nucleon-Higgs Yukawa coupling y ~ f  $m_N$  / v, with v = 246 GeV is the Higgs vacuum expectation value and f parameterizes the Higgs-nucleon coupling.

Following the lattice computations [33]~[35], we shall consider the central value f ~ 0.3 in agreement with Ref. [32].

- [32] J. M. Cline, K. Kainulainen, P. Scott, and C. Weniger, Phys. Rev. D 88, 055025 (2013); 92, 039906(E) (2015).
- [33] J. M. Alarcon, J. Martin Camalich, and J. A. Oller, Ann. Phys. (Berlin) **336**, 413 (2013).
- [34] R. D. Young, *Proc. Sci.*, LATTICE2012 (2012) 014, arXiv:1301.1765.
- [35] L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich, and M. J. Vicente-Vacas, Phys. Rev. D 88, 054507 (2013).

#### Equation of State(EOS) of hadronic matter without dark matter

Effective mass via the interaction of scalar meson

$$m_*=m_N-g_s\phi_0$$

After taking the mean fields of two mesons

$$V_0 = \frac{g_v n}{m_\omega^2} \qquad n = \frac{k_F^3}{3\pi^2}$$

$$\phi_0 = \frac{g_s n_s(m_*)}{m_s^2} \qquad n_s = \frac{\partial \epsilon_{st}(m_*)}{\partial m_*} = \frac{2}{(2\pi)^3} \int_0^{k_F} d^3 \vec{k} \frac{m_*}{\sqrt{k^2 + m_*^2}}$$

to be useful later on, and it is given by

$$n_s = rac{m_*^3}{2\pi^2} \left[ x_F \sqrt{1 + x_F^2} - ln \left( x_F + \sqrt{1 + x_F^2} \right) \right]$$

$$\epsilon_{st} = \frac{2}{(2\pi)^3} \int_0^{k_F} d^3 \vec{k} \sqrt{k^2 + m_*^2}$$

$$p_{st} = \frac{1}{3} \frac{2}{(2\pi)^3} \int_0^{k_F} d^3 \vec{k} \frac{k^2}{\sqrt{k^2 + m_*^2}}$$

$$\epsilon_{st} = \frac{m_*^4}{8\pi^2} ((x_F + 2x_F^3)\sqrt{1 + x_F^2} - \sin h^{-1}(x_F))$$
$$p_{st} = \frac{m_*^4}{24\pi^2} ((-3x_F + 2x_F^3)\sqrt{1 + x_F^2} + 3\sin h^{-1}(x_F))$$

where we have defined  $x_F = k_F/m_*$ .



FIG. 1 Neutron effective mass versus wave number (in GeV) without dark matter in the  $\sigma$  –  $\omega$  model.



FIG. 2 vector and scalar mean fields versus wave number (in GeV) without dark matter in the  $\sigma$  –  $\omega$  model.

#### EOS without dark matter

Depending on the values of the parameters the DM-Higgs coupling takes values in the range 0.001–0.1, and in the following we shall adopt the value  $y \approx 0.07$ .

We also assume that inside the neutron star the DM average number density is ~1000 times smaller than the average neutron number density, which implies a DM mass fraction MDM=M  $\simeq$  1=6  $\simeq$  0.17 [18], with M being the mass of the star.

#### [18] X. Li, F. Wang, and K. S. Cheng, J. Cosmol. Astropart. Phys. 10 (2012) 031.

Applying the mean-field approximation to this model, the system looks like an ideal Fermi gas consisting of two noninteracting fermions with effective masses

$$m_*^n = m_N - g_s \phi_0 - f h_0$$
  

$$h_0 = \frac{f n_s(m_*^n) + y n_s(M_*^{\chi})}{M_h^2} \qquad \phi_0 = \frac{g_s n_s(m_*^n)}{m_s^2}$$



## TOV equation and R versus M diagram

TOV equation :

 $m'(r) = 4\pi r^2 \epsilon(r)$ 

$$p'(r) = -(\epsilon(r) + p(r))\frac{m(r) + 4\pi p(r)r^3}{r^2(1 - 2m(r)/r)}$$

With these two initial conditions :  $m(r = 0) = 0, p(r = 0) = p_c$ ,



## Conclusion

- We choose the simplest model (QHD-I) and introduce the Higgs and dark matter captured inside the neutron star.
- We calculate the EOSs w/wo the dark matter.
- We find that the dark matters at the neutron star core can make the EOS soft !
- We consider TOV equation including the relativistic corrections, and show the R vs. M relations w/wo the dark matter
- We are trying to check more the interesting and important effect of dark matter depending on the (relaxed) parameter spaces !

# Thank you for your attention !!

# ありがとうございます。

## Others....

We will try to consider the self coupling of the Higgs boson, and extract some constraints(?) from the neutron star physics.

## 암흑물질 후보군

#### Dark Sector Candidates, Anomalies, and Search Techniques



https://ko.wikipedia.org/wiki/암흑물질

| 일부 암흑물실 가설[00]             |                                                |
|----------------------------|------------------------------------------------|
| 가벼운 보손                     | 양자 색역학 액시온                                     |
|                            | 액시온 같은 입자                                      |
|                            | 퍼지 차가운 암흑물질(fuzzy cold                         |
|                            | dark matter)                                   |
| 중성미자                       | 표준 모형                                          |
|                            | 비활성 중성미자                                       |
| 약작용 스케일(weak<br>scale)     | 초대칭                                            |
|                            | 추가 차원                                          |
|                            | 작은 힉스(little Higgs)                            |
|                            | 유효 이론                                          |
|                            | 단순화 모형                                         |
| 다른 입자들                     | 약하게 상호작용하는 무거운 입자                              |
|                            | (WIMP)                                         |
|                            | 자체 상호작용하는 암흑물질(Self-                           |
|                            | interacting dark matter)                       |
|                            | 기묘체 <sup>[87]</sup> Strangelet                 |
| 초유체 진공 이론                  |                                                |
| (superfluid vacuum         |                                                |
| theory                     |                                                |
| 동석 암옥물실<br>(Dynamical Dark |                                                |
| Matter)                    |                                                |
| 거시적                        | 원시 블랙홀 <sup>[88][89][90][91][92][93][94]</sup> |
|                            | 거대하고 조밀한 헤일로 물체                                |
|                            | (MaCHOs)                                       |
|                            | 거시적 암흑물질 (Macros)                              |
| 일반 상대성이론의 대<br>안 (MOG)     | 수정 뉴턴 역학 (MOND)                                |
|                            | 텐서-벡터-스칼라 중력 (TeVeS)                           |
|                            |                                                |

















Figure 27.1: Upper limits on the SI DM-nucleon cross section as a function of DM mass.