# 銀河化学進化から迫る中性子捕獲元素の起源

垂水 勇太



### Elements in the Universe

- \* Elements are synthesized in high-density environment.
- \* Stars, compact objects, ...



#### Elements in the Universe

- \* Elements are synthesized in high-density environment.
- \* Stars, compact objects, ...



### What is the origin of r-process elements?

<u>https://aasnova.org/2021/01/06/</u> warning-n<u>eutron-star-collision-immi</u>nent/



Neutron-Star Merger

- r-process is observationally confirmed
- Too long delay time?

Magneto-Rotational supernova

- r-process may happen
- Short delay time, consistent with rprocess trend at [Fe/ H] > -1



Collapsar

- r-process may happen
- <u>Negative</u> delay time?

# S-process in AGB stars

Figure from https://en.wikipedia.org/wiki/Asymptotic\_giant\_branch

- <sup>99</sup>Tc is observed in Baenhanced giants of AGB stage
- \* During H, He shell burning, convection mixes layers and produce <sup>13</sup>C via  ${}^{12}C(p,\gamma){}^{13}N(\beta^+\nu){}^{13}C$
- \*  ${}^{13}C(\alpha, n){}^{16}O$  reaction produces neutrons



# Chemical enrichment of a galaxy

- Stars imprint the chemical abundances of the natal cloud
- Spectroscopy reveals the elemental abundances of stars
- \* What can we learn from them?



# Local group galaxies https://en.wikipedia.org/wiki/Local\_Group

Tucana II 😣

|                   |                    | A23 A11 A25 A15 A15 A15 A23 A17 A23 A23 A17 A25 A23 A16 A23                                                | sup <sup>big</sup> # 4 million ly                                                                                                                               |
|-------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stellar Mass      |                    | C 1513<br>C tess<br>C tess<br>W.M KX23<br>KX24<br>KX24<br>KX24<br>KX24<br>KX25<br>KX24<br>KX24<br>KX24<br>KX24<br>KX24<br>KX24<br>KX24<br>KX24 | 2 million ly<br>CV1 + Heroit<br>Baton<br>Booto Leo<br>Leo A<br>Leo A<br>Leo A<br>Leo T<br>Composed a<br>Leo A<br>Leo T<br>Composed a<br>Leo A<br>Leo A<br>Leo P |
| MW                | 10 <sup>10.5</sup> | Ports                                                                                                                                          |                                                                                                                                                                 |
| Classical dwarf   | $10^5 - 10^9$      |                                                                                                                                                | CVII<br>CVI - NGC 6822<br>Ma 1                                                                                                                                  |
| Ultra-faint dwarf | $10^{2.5} - 10^5$  | D<br>Pisces II Ursa minor<br>UMa II<br>Trianculum 2                                                                                            | raco<br>Boote I<br>Boote II<br>Coma Leo I                                                                                                                       |
| Globular cluster  | $10^5 - 10^7$      | Reticulum II<br>Sculptor                                                                                                                       | Leo IV<br>Leo T<br>Carina                                                                                                                                       |
|                   |                    | Grus LM<br>Horologium e                                                                                                                        | IC / Crater 2<br>SMC                                                                                                                                            |



 Time difference between formation of progenitor and production of r-process elements



age of the Universe (t)



 Time difference between formation of progenitor and production of r-process elements



### r-process in MW

\* Flat and diverging?



#### r-process in MW

\* Flat and diverging?



#### r-process in MW

\* Flat and diverging, but too many upper limits



#### Ba as the r-process tracer

#### \* Is Ba appropriate as the r-process tracer?

Ba

Eu



#### Ba as the r-process tracer

Is Ba appropriate as the r-process tracer?





#### Ba as the r-process tracer

✤ Is Ba appropriate as the r-process tracer? → Yes!

Ba Eu



# r-process in MW (metal-poor)



Tarumi+21

# r-process in MW (metal-rich)

- Metal-rich regime shows no delay
- "2-phase ISM model" (Schoenrich+1 9), "natal kick" (Banerjee+20),



# Barium in Milky Way



#### Classical dwarfs



### Classical dwarf: Sculptor

Skuladottir+19

- [Y/Mg] [Ba/Mg] [La/Mg] [Nd/Mg] [Eu/Mg] -2.5 -2 -1.5 -1 -0.50 -3[Fe/H]
- [Ba/Mg] increase: sprocess delay
- [Eu/Mg] flat: no r-process delay

#### Disrupted classical dwarf: Gaia Enceladus Matsuno+21

 Gaia-Enceladus is r-rich, could be similar to some classical dwarfs



#### What are / Why UFDs? https://en.wikipedia.org/wiki/Local\_Group

- UFDs are small (< 10<sup>5</sup> Lsun) satellite galaxies.
- \* UFDs are old.
  - Good probe for high-z galaxy.
- Small stellar mass: "0 or 1 rare&prolific r-process".
- Small but important !







- \* 3/16 UFD are enriched with Eu.
- \* [Eu/Fe] ~ 2: highly enriched, consistent with ~ 0.01  $M_{\odot}$  of r-process enrichment, NSM?
- \* [Eu/Fe] ~ 0.5: moderately enriched, NSM in the outskirt or used to be a larger galaxy?

#### r-process enrichment







- \* Inside explosion is favored for highly enriched UFD (Ret II).
- Outside explosion is favored for Moderately enriched UFD (Tuc III, Gru II).



- Sr, Ba: deficit. Eu: Not enough data. \*
- 3/16 UFD are enriched with Eu. \*
- What is the origin of Ba, Sr in "no r-process" UFDs? \*
  - Can AGB stars explain the Ba, Sr abundances in UFDs? \*

Normalized to solar

# AGB enrichment

 $[X/Y] = \log_{10} \left[ \frac{N_X}{N_Y} \right] + C$ Normalized to solar

- \* AGB alone cannot explain Ba abundances.
- Additional source (e.g. rotating massive stars) should be working





## What can we infer?

|                                        | Timescale                          | Signature       | Interpretation                                                      |
|----------------------------------------|------------------------------------|-----------------|---------------------------------------------------------------------|
| MW, [Fe/H] > -1                        | A few Gyr                          | r ↘<br>s ↗      | R: no delay<br>S: delay or metallicity dependence                   |
| MW, [Fe/H] < -2                        | A few                              | r ∕             | R: delay                                                            |
|                                        | 100Myr                             | s ×             | S: no information                                                   |
| Classical dwarf                        | A few Gyr?                         | r ∕             | R: no delay?                                                        |
| (-3 < [Fe/H] < -1)                     |                                    | s ∕             | S: delay or metallicity dependence                                  |
| Ultrafaint dwarf                       | A few                              | R: 1 or 0?      | R: Rare&prolific                                                    |
| (-3 < [Fe/H] < -2)                     | 100Myr                             | S: AGB+α        | S: additional source (e.g. RMS)                                     |
| Globular clusters<br>(-3 < [Fe/H] < 0) | Depends on<br>formation<br>process | R: M15?<br>S: ? | R: abundance spread in the natal<br>cloud?<br>S: measurement error? |

# Unsolved problems

- [Fe/H] > -1 stars have flat [Eu/Mg] [Fe/H] trend: delay shorter than ~Gyr?
- \* Do rotating massive stars really produce s-process elements?
- \* How should we interpret the Ba abundances of classical dwarfs?