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Neutron Star Merger: heavy element factory

* Heavy elements (>the iron peak) are produced
via neutron capture processes, (r)apid or
(s)low process (B2FH 57, Cameron 57).

Solar Atomic Abundance
B2FH 1957

* The origin of r-process elements is still a
mystery in astrophysics.
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(Lattimer & Schramm 74).
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e A kilonova in GW170817 reveals that mergers
produce some r-process elements.



The first neutron merger in 2017 and its Electromagnetic
(EM) counterparts
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Dynamical Ejecta in Merger
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« Dynamical ejecta mass ~ 0.01Msun, v~0.2-0.8c driven by tidal force and shock heating.
e E~1051 erg, resulting in EM emission.

also Baustein + 13, Piran + 13, Rosswog 2013, Kyutoku+15, Sekiguchi + 15, 16, Radice+16



Disk Outflow from the remnant

Shibata+17, Fujibayashi+18
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also Baustein + 13, Piran + 13, Rosswog 2013, Kyutoku+15, Sekiguchi + 15, 16, Radice+16

* Disk ejecta mass can be ~ 0.05Msun, but slower v~0.1c.
e Intotal, a few % Msun and E~10°1 erg, resulting in EM emission.



Kilonova

Li & Paczynski 98, Kulkarni 05, Metzger + 10, Barnes & Kasen 13, Tanaka & KH 13

Merger Mass ejection R-process Radioactive decay

A few % Msun nucleosynthesis _"““’@“
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Powered by radloactlwty of r-process nuclei.
The peak luminosity ~ 103-104 x nova.

Spectrum ~ quasi-thermal.
Atomic lines dominate the opacity (photon absorption).



A Kilonova in GW170817

Arcavi+17, Coulter+17, Lipunov+17, Soares-Santos+17, Tanvir+17,
Valenti+17, Kasliwal+17,Drout+17, Evans+17, Utsumi+17

I
RN
©

Type la
supernova

Type Ib/c
supernova

N
o0

|
—
~

SN 2002bj

I
RN
@) |

SN 2010X

N
N

()
©
>
by e
c
©
E _16
()
e
E
@)
(7))}
0
<

. SN 1999em + 1
Arcavi + 17

I
RN
w

Kilonova

I
RN
N

-20 -10 0 10 20 30
Time from peak (rest-frame days)

The kilonova is much fainter and faster than supernovae.
Knowing the merger times and locations from GW greatly helps to find kilonovae.



R-process Nucleosynthesis in merger ejecta

; Temperature = 5.58E+09 K
— Temperature [K]

— Density [g/cm?]

— Heatingrate [erg /s /gl
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R-process heating

(Metzger et al 10, Goriely et al 11, Roberts et al 11, Korobkin et al 12,
Wanajo et al 2014, Lippuner and Roberts 2015, KH, Sari, Piran 2017)
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Simple estimate of heating

 Many radioactive decay chains: KH,Sari,Piran 17

dN o 1 =y Q(F) o 2

dt i

* A relation between the lifetime and decay energy:
roc BT =9 Qt) oc t712

 Physical constants in beta decay:

Energy: m.c”

Time: tp = QGWQ 564 ~ 9000 s

Heating rate per unit mass e
» Q(t) ~ 1 me (;) ~ 1010tg;y2 erg/s/g

Very similar to the nuclear network resulits.




Energy source: radioactive decay of many species

Way & Wigner 1948 KH, Sari, Piran 2017 (also Metzger + 10, Korobkin+11,

Goriely+11, Roberts+11, Wanajo+14,18, Lippuner & Roberts 14)
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Energy source: radioactive decay of many species
Way & Wigner 1948 KH, Sari, Piran 2017 (also Metzger + 10, Korobkin+11,

Goriely+11, Roberts+11,Wanajo+14,18, Lippuner & Roberts 14)
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This is a unique properties of the heating rates of many beta-
decay chains.




The energy budget of the Kilonova in GW170817

KH & Nakar 20

B-decay: 0.05M
Spitzer (Av-L))
Waxman et al. 18
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The light curve follows the B-decay heating rate.

Ejecta mass is~ 0.05Msun.

The photospheric velocity ~0.1-0.3c.

The photospheric temperature evolves T=5000K -> 2000K.



Implication to the r-proces

Lanthanide

Solar r-process abundance
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As long as, the 2nd and 3rd elements are abundant, radioactivity
can explain the energy budget.




Implication to the r-proces

Lanthanide
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() the 1st peak only cannot explain the observation.
(i) Beyond 2nd peak only also cannot.




R-process mass budget from GWTC-2

KH, Piran, Paul 15, KH, Beniamini, Piran 18
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Ref: Goriely 1999, Lodders et al 2009, Wanderman & Piran 2015, Fong+2015, KH, Piran, Paul 2015,
Beniamini, KH, Piran 2016, Pol, McLaughlin, Lorimer 2019, KH & Nakar 2020, LVC 2020




a-decay and fission as the energy source?
KH & Nakar 20, see also, Wanajo+14, KH+16, Barnes+16, Zhu+18, Wu+19
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e a-decay can dominate the energy source (222Rn, 223Ra, 224Ra, 22°Ra). But the relative
importance to 3-decay is very uncertain.

Spontaneous fission can also be important at late times > 10 day. But it is also
highly uncertain.



a-decay and fission as the energy source?
KH & Nakar 20, see also, Wanajo+14, KH+16, Barnes+16, Zhu+18, Wu+19
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a-decay can dominate the energy source (222Rn, 223Ra, 224Ra, 225Ra). But the relative
importance to 3-decay is very uncertain.

Spontaneous fission can also be important at late times > 10 day. But it is also
highly uncertain.



Kilonova Radiation Transfer

Tanaka+2020

Photospheric phase (t<10 day)
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 The photosphere is in the middle (v~0.1-0.2c).
 The photospheric temperature is T=0(103K).
 The spectrum peaks at optical-nIR. Rich observation data exist for GW170817.




Kilonova Radiation Transfer

Tanaka+2020

Photospheric phase (t<10 day)
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 The photosphere is in the middle (v~0.1-0.2c).
 The photospheric temperature is T=0(103K).
 The spectrum peaks at optical-nIR. Rich observed da




Kilonova Radiation Transfer Result

Shibata, Fujibayashi, KH+17, Kawaguchi+19
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From the observed data, the opacity must increase with time.

The early blue emission (~ 1 day) => low opacity, e.g., lanthanide-free light r-process.
The late red emission (~5 days) => high opacity, e.g., lanthanide-rich heavy r-process.
However, the models are generally too red. We probably miss something.

We'll hear more about the kilonova spectrum from Domoto-san.



Kilonova N bular Phase

2) Nebular phase t>10 day)._‘-‘%; Phot
oton
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Energy flow: B-decay -> MeV electrons ->
ionization & secondaries -> thermal
electrons -> excite ions -> emission lines

 Photons escape from the almost entire ejecta without absorption, i.e., tau<1.
« Kilonova radiation is dominated by emission lines, which are narrower.
e Although it is fainter, we may have good chance to identify more elements.



Kilonova Nebular Phase

Fine Structure Energy Scale
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 Photons escape from the almost entire ejecta without absorption, i.e., tau<1.
« Kilonova radiation is dominated by emission lines, which are narrower.
« Although it is fainter, we may have good chance to identify more elements.



Line list for kilonova nebula

- We constructed a forbidden (M1) line list up to Eeinsteinium (Z=99).

- The experimentally calibrated levels and the LS selection rules are used.

- A values are assigned with an analytic formula (Pasternack 40, Shortley 40, Bahcall & Wolf 68)

- Some ions are missing because the energy levels are unknown.

KH+2022 and in prep.
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Kilonova nebular spectrum: 40 days

@ 100 Mpc-scaled Obs. (4.5 um)
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« We can now generate synthetic nebular spectra with the accurate line location.
« JWST can resolve the emission lines for kilonovae at ~100Mpc.
e With this model and data, the amounts of ions can be estimated.



Forward & Reverse modelings

Forward model

GRASP2K Starting from
Den Hartog 03 .
atomic data

NdII : even — odd
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Forward modeling (KH+21)

Currently, the model is limited to a few elements.
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Summary

Mass ejection of O(0.01Msun) is expected from numerical
relativity.

A kilonova is powered by radioactivity of neutron-rich nucleil.

The observed kilonova light curve points to many radioactive
species of 0.05Msun.

The late-time Spitzer observation is indicative of the
existence of W.

JWST will cover a good range of the kilonova nebular
spectrum.



