

RIビームファクトリーにおける 超新星爆発下の核反応研究

鈴木 大介 理研仁科センター

daisuke.suzuki@ribf.riken.jp

- RIビームファクトリーについて
- SAKURAプロジェクト概要
- 2022年春キャンペーンの初期解析

2023年2月9-10日 東京大学本郷キャンパス・理学部小柴ホール 中性子捕獲反応で迫る宇宙の元素合成

RIビームファクトリー (RIBF)概要

低速施設

高速ビーム施設

超重元素

核融合反応による超重元素の生成

放射性同位体(RI)

重イオンを光速の約70%(核子あたり 345 MeV)まで加速。ウラン238の核分 裂反応によりRIを生成可能

RIBFにおける核図表の拡大

- ウラン238の核分裂反応により、R過程に関わる中性子過剰同位体がアクセス可能に
- 第一ピーク(⁷⁸Ni 近傍)では、ドリップライン近傍まで生成可能に
- 第二ピーク(¹³²Sn近傍)では、二重魔法数近傍一帯を幅広く生成できるようになった。
- 第三ピーク(²⁰⁸Pb南)領域の開拓を、KEK KISSプロジェクトが推進 →平山さん

RIBFにおける元素合成研究

核構造•核物性

- 結合エネルギーの獲得機構
 - 殻構造、変形構造、ペアリング、クラスター… etc
 - 魔法数 e.g. Z = 28/N = 50における魔法数消失の予兆の発見(2019)
- 核物質の状態方程式(非飽和密度、非対称性)

静的な核データ

- ・ ベータ崩壊半減期・中性子放出確率
 → 西村俊二さん
- 質量測定(MR-TOF、R3、SHARAQ)

動的な核データ(天体核反応)

- 天体環境とのインターフェース
- 軽い質量領域における測定(90年代~)
- ・サロゲート法による重元素同位体の中性子捕獲断面積
 →今井さん・本講演

中性子捕獲断面積の測定

シミュレーション用核データとしては、最も実験的な不定性が大きい

本質的な測定上の問題

- 現状の技術では、中性子・RIどちらか一方が「標的」でないといけない
- 中性子・RIともに短寿命
- 実用にたる中性子標的・RI標的が存在しない

サロゲート法

- 代理反応(surrogate method)
- 重陽子を標的とする。

目的の断面積

 $\sigma_{130} \operatorname{Sn}(n,\gamma)$

- 陽子と中性子が非常に緩く束 縛した粒子。陽子を「傍観者」と して近似的に取り扱うことがで きれば、中性子の反応断面積 を評価できる。
- (1) 複合核状態の条件をできる 限り一致させ、(2)崩壊分岐確 率を決定する。

= $(\sigma_{130} \mathrm{Te}(n,\gamma))$

既知のデータ

理論値

(光学模型)

¹³¹Sn

¹³¹Te

 $\sigma_{\underline{CN}}$

 $\sigma_{\rm CN}$

¹³¹Sn

¹³¹Te

 P_{γ}

 P_{ν}

SAKURAプロジェクト

- RIビームファクトリーの大強度ビームにより、希少核の中性子捕獲断面積
 を測定する試みを本格化
- •「重元素合成の起源」
- 2022年4月-5月にデータ収集を初めて実施

SHARAQ18

R過程第2ピーク近傍のフリーズアウト現象の解明 → ¹³⁰Sn(n,y)断面積

SHARAQ19

R過程における中性子捕獲断面積の感度分析

最終組成に対する感度分析(4つのシナリオ)

M. Mumpower, Prog. In Part. and Nucl. Phys. 86, 86 (2016)

- 高温時の(n,γ) ↔ (γ,n)の平衡状態には影響なし
- フリーズアウト時の分布変化に影響
 →R過程経路に対して安定核側の領域が カギとなる
- 二重魔法核¹³²Sn領域のデータが重要領域

¹³⁰Sn(*n*,γ)反応

N=82

- ¹³⁰Snは寿命が長い。フリーズアウトの際に、A = 130系列のベータ崩壊の 流れが滞留する。
- 中性子捕獲はA = 131 へと流れを分岐させる。断面積はA = 130 と131の 存在比に大きな影響を与える。

⁵⁶Ni(*d*,*p*) 反応を用いたサロゲート法

崩壊分岐比を測定する

実現するためには技術的なポイントが3つ

(1)OEDOによる複合核状態の制御

共鳴状態のスピン分布を、実際の中性子捕獲の分 布に近い条件にしたい

- RIBF標準RIエネルギー約200 MeV/uでは高すぎる
- OEDOビームラインによる低速化 (~15 MeV/u までは実現)

(2) TiNAによる励起関数の導出

中性子捕獲直後の共鳴状態の励起エネルギー

- 崩壊後の粒子(複数)から再構築するのは難度が高い
- 反跳陽子の運動量(エネルギーと角度)から再現する(欠損 質量分光法)
- 位置感応型シリコン・Csl検出器アレイ(TiNA)
- CD₂薄膜標的(エネルギー損失による分解能劣化を抑止)

TiNA

理研・CNS・RCNP

(3) QQDスペクトロメータによる崩壊チャネル同定

粒子・ガンマ線放出が終わった後の散乱核を、スペクトロメータで分析 →崩壊チャネルをイベント毎に決定する

レファレンス用ビーム130Teの生成

FE9から反応焦点面までのTOFから減速 後のエネルギーを決定

萩之内大雅、修士論文、東北大学(2023年)

¹³⁰Te(d,p) 反応による¹³¹Teの励起スペクトル

今後の展望

- R過程におけるCN(複合核過程)とDRC(直接捕獲)のクロスオーバー現象を明らかにする。¹³⁰Snより重い領域では、中性子数が増えるに従って、CNの断面積は低下すると予想されている。
- vp過程の経路上に現れる次の滞留点(⁶⁰Zn, ⁶⁴Ge...)の断面積を測定する。

- 理研仁科センターのRIビームファクトリーにおいて、サロゲート法による放射性同位体の 中性子捕獲断面積の測定プロジェクトSAKURAを開始した。
- OEDOビームラインの低速RIビームにより複合核状態のスピン分布を制御。
- ・ 位置感応型シリコン・CsIアレイTiNAとQQDスペクトロメータにより、崩壊分岐比の励起

 関数を取得。
- 2022年春にキャンペーン実験を実施した。R過程第二ピークのフリーズアウト現象とP核の起源をめぐる研究を展開。現在データ解析を進めている。

SAKURA2022 collaboration

N. Imai,^{*1} D. Suzuki,^{*2} S. Michimasa,^{*1} T. Chillery,^{*1} B. Mauss,^{*3,*2} D.S. Ahn,^{*4} D. Beaumel,^{*5,*2}
K.Y. Chae,^{*6} S. Cherubini,^{*7} M. Dozono,^{*8,*2} M. Egeta,^{*9,*2} F. Endo,^{*9,*2} N. Fukuda,^{*2} T. Haginouchi,^{*9,*2}
S. Hanai,^{*1} S. Hayakawa,^{*1} Y. Hijikata,^{*8,*2} J.W. Hwang,^{*4} S. Ishio,^{*9,*2} N. Fukuda,^{*9,*2} S. Kawase,^{*10,*1}
K. Kawata,^{*1} R. Kojima,^{*1} S. Kubono,^{*2} M. La Cognata,^{*7} L. Lamia,^{*7} J. Li,^{*1} N. Nishimura,^{*2} K. Okawa,^{*1}
M. Oishi,^{*10,*2} H.J. Ong,^{*11,*2,*12} S. Ota,^{*12} S. Palmerini,^{*13,*14} R. Pizzone,^{*7} T. Saito,^{*1} H. Sakurai,^{*2}
S. Shimoura,^{*1,*2} Y. Shimizu,^{*2} T. Sumikama,^{*2} H. Suzuki,^{*2} H. Takeda,^{*2} H. Tanaka,^{*15,*2} M. Tanaka,^{*2}
X. Tang,^{*12} T. Teranishi,^{*15,*2} Y. Togano,^{*2} A. Tunimo,^{*7} Y. Wang,^{*16} K. Yako,^{*1} K. Yahiro,^{*8,*2}
H. Yamaguchi,^{*1} R. Yokoyama,^{*1} K. Yoshida,^{*2} R. Yoshida,^{*8,*2} M. Yoshimoto,^{*2} and Z. Xiao,^{*16}

- *³ CEA-DAM
- *4 CENS, Institute for Basic Science
- ^{*5} IJClab, IN2P3, CNRS
- *6 Department of Physics, Sungkyunkwan Unviversity
- *7 INFN Laboratori Nazionali del Sud
- *8 Department of Physics, Kyoto University
- *⁹ Department of Physics, Tohoku University
- *¹⁰ IGSES, Kyushu University
 *¹¹ RCNP, Osaka University
- *¹¹ RCNP, Osaka University
- *¹² Institute of Modern Physics, Chinese Academy of Sciences
- *¹³ INFN Sezione di Perugia
- *¹⁴ Department of Physics, University of Perugia
- *15 Department of Physics, Kyushu University
- ^{*16} Tsinghua University

^{*1} CNS, University of Tokyo

^{*2} RIKEN Nishina Center