

代理反応法を用いた不安定核中性子捕獲反応の研究

今井伸明

東京大学大学院理学系研究科 附属原子核科学研究センター

9,10/Feb./2023

Nucleosynthesis in the star

β rate
$$ω_β = 1/t = 2.47 [s^{-1}]$$

$$\omega_n = N_n < \sigma >^{max} V$$

=10²⁰ x0.1 mb 4.4x10⁸ [cm/s]

= 4.38 [s⁻¹]

(T⁹=1 ~ 0.1 MeV)

Study

Univ. of To

Neutron energy in r-process

n-capture $@1 < T_9 < 3$

S. Woosley and T. Janka, Nature Physics 172, 147 (2005)

Study

Univ. of To

The for the formation mechanisms of (n,γ)

Direct/Semi-direct reaction (DRC)

9,10/Feb./2023

Compound reaction

Hauser-Feshbach theory

$$\sigma_{n\gamma}(E) = \frac{\pi}{k^2 (2J_i + 1)(2J_n + 1)} \sum_{J^{\pi}} (2J + 1) \frac{T_n(J^{\pi})T_{\gamma}(J^{\pi})}{T_{tot}(J^{\pi})}$$

• *T_n*: neutron transmission coeff.

← optical model potential

• T_{γ} : photon transmission coeff.

← level density (cf. @¹³¹Sn
$$ρ$$
= 40 MeV⁻¹),
gamma strength function (γSF)

$$(4.186) \quad \Gamma_{\alpha'}(E^{tot}, J, \Pi \longrightarrow E_x, I', \Pi_f) = \frac{1}{2\pi\rho(E^{tot}, J, \Pi)} \sum_{j'=|J-I'|}^{J+I'} \sum_{l'=|j'-s'|}^{j'+s'} \delta_{\pi}(\alpha') \left\langle T_{\alpha'l'j'}^J(E_{a'}') \right\rangle$$

$$T_{(E1)}(E_{\gamma}) = 2\pi E_{\gamma} \frac{\sigma_{GDR} I_{GDR}}{3\pi^2 \hbar^2 c^2} \left[\frac{E_{\gamma} I_{(E_{\gamma})}}{\left(E_{\gamma}^2 - E_{GDR}^2\right)^2 + E_{\gamma}^2 \Gamma(E_{\gamma})^2} + \frac{0./I_{GDR} 4\pi^2 I^2}{E_{GDR}^5} \right]$$

DRC/CN and level density

Evaluation of T_{γ} is important

Study

Surrogate ratio method

$$\sigma_{^{79}\text{Se}}^{(n,\gamma)}(E) = \sigma_{^{77}\text{Se}}^{(n,\gamma)}(E) \times \frac{\sigma^{CN}(^{80}\text{Se})}{\sigma^{CN}(^{78}\text{Se})} \times \frac{P_{\gamma}^{^{80}\text{Se}}(E)}{P_{\gamma}^{^{78}\text{Se}}(E)}.$$
 (1)

Example @JAEA

Center for Nuclear Study Univ. of Tokyo

Spin distribution difference ?

⁷⁹Se(n,γ) reaction vs ⁷⁹Se(d,p) reaction

Neutron capture

Stripping reaction

Level density distribution

Fermi-gas model

Study

(4.236)
$$\rho_F(E_x, J, \Pi) = \frac{1}{2} \frac{2J+1}{2\sqrt{2\pi\sigma^3}} \exp\left[-\frac{(J+\frac{1}{2})^2}{2\sigma^2}\right] \frac{\sqrt{\pi}}{12} \frac{\exp\left[2\sqrt{aU}\right]}{a^{1/4}U^{5/4}},$$

From TALYS manual

Assumption: The projection of the angular momentum are randomly coupled.

9,10/Feb./2023

Calculated spin distribution for ⁷⁹Se

⁷⁹Se g.s. $I^{\pi} = 7/2^+$ iso @96 keV $I^{\pi} = 1/2^-$

Talys spin distribution at 10 MeV By ⁷⁹Se(d,p) reaction @ 40 MeV (complete compound reaction is assumed.)

DWBA calc. $\Delta J = \frac{1}{2} \sim \frac{13}{2}$, S=1.0, weighted with the level density

First exp of Surrogate reaction at OEDO/RIBF

- ⁷⁹Se(n,γ) "stellar thermometer"
- One of Long-lived fission products
- No direct experimental data about $\sigma(n,\gamma)$

E (MeV)	Jp	T1/2	Decay modes
0.0	7/2+	3.2x10 ⁵ y	β ⁻ 100%
0.0958	1/2-	3.92m	IT:99.94% β ⁻ 0.06%

Surrogate ratio method/ Evaluation of **T**_v from (d,p)

Surrogate reaction w/o γ-ray

measurement

- Typical setup for surrogate reaction exp.
- = Recoil particle detectors
- + γ-ray detector array

R. Hatarik et al., PRC81, 011602 (R) (2010)

Experimental Setup for ImPACT17-02-02

Residual nuclei vs Excitation energy

Center for Nu Univ. of Toky

 P_{γ} in ^{77,79}Se(*d*,*p*) reaction

N. Imai et al., submitted to PLB

$$P_{\gamma}(E) = \sum G_{decay}(J^{\pi}, E) F^{dp}(J^{\pi}, E)$$

TENDL2021 recommendation Normalization $\Gamma_{\gamma} \equiv \alpha = 1.75$ (dashed)

Best fitting: α =3.75 (solid)

TENDL2021 recommendation α =1.00 To reproduce Titech data (Igashira et al.,)

⁷⁹Se(n,γ) cross sesction

Study

Center for Nu Univ. of Toky

Summary

- Surrogate reaction without γ-ray measurement was employed with OEDO/SHARAQ.
 - Spin distribution matching
 - Odd nuclei may be better for (d,p) reaction
 - Small energy step below 1 MeV is important
- σ of ⁷⁹Se(n, γ)⁸⁰Se were evaluated at E_n <6 MeV.
- We applied this method to medium heavy unstable nuclei ¹³⁰Sn and ⁵⁶Ni.

Collaborators of ImPACT-17

N.Imai, S.Michimasa, M.Dozono, S.Ota, M.Takaki, J.Hwang, C.Iwamoto, S.Masuoka, N.Kitamura, K.Kawata, H.Simizu, R. Tsunoda, S.Hayakawa, P.Schrock, O.Beliuskina, L.Yei, H.Yamaguchi, K.Yako, K.Wimmer,

T.Sumikama, H.Otsu, H.Wang, S.Takeuchi, S.Kawase, N.Chiga, X.Sun,

S.Naimi, D.Nagae, S.Omika, K.Chikaato, T.Teranishi, K.Iribe, K.Yoshida,

E.Ideguchi, Y.Fan, Y.Watanabe, K.Nakano, H.Miyatake, Y.X.Watanabe, T.Nakamura,

K.Yoshida, N.Fukuda, Y.Shimizu, H.Suzuki, H.Takeda, D.S.Ahn, Y.Yanagisawa, K.Kusaka, T.Ohtake, H.Sakurai, and S.Shimoura

