Oslo法と(p,2p)反応を用いた 中性子過剰核の 中性子捕獲反応測定計画

栂野 泰宏 理化学研究所 仁科加速器研究センター

中性子捕獲反応で迫る宇宙の元素合成,東京大学本郷キャンパス,2023.02.09-10

Outline

- Neutron capture reactions in r process
- Oslo method
- (p,2p)-Oslo method
- Experimental setup: STRASE + CATANA
- Future plan
- Proof of principle experiment at RIBF

Neutron capture reactions in r process

Important (n,γ) rates in r process

Important (n,γ) rate = (n,γ) rates with huge impacts on final abundance

Constrain (n, γ) rates on more neutron-rich nuclei \rightarrow New indirect method

Neutron captures at east side of N=82 & 126: statistical capture

5

Indirect method for ${}^{A}Z(n, \gamma)^{A+1}Z$: Oslo method Produce ${}^{A+1}Z^* \rightarrow \text{Fit } E_x \text{ vs } E_\gamma \text{ matrix } \rightarrow \text{Function forms of NLD & }\gamma\text{SF}$

A. C. Larsen et al., Prog. Part. Nucl. Phys. 107, 69 (2019).

Function form: Need normalization

Oslo method: ¹¹²Cd(³He, ³He'γ)¹¹²Cd

A. C. Larsen et al., Phys. Rev. C 87, 014319 (2013).

Oslo method for unstable nuclei: β-Oslo method

Reaction: β decay

Detector: high efficiency (thick Nal, ~85% for 0.661 MeV)

- Feasible with ~ 1cps beam
- Jπ of implanted nucleus: must be known
- Lack of normalization points

Advantages

High (p,2p) cross section (~mb)
Less neutron-rich beam: high intensity
→ beam rate: ~ 4 kcps

Disadvantage

Low E_x resolution (σ ~2 MeV > $\sigma_{\text{standard Oslo}}$)

Lack of normalization points (same as β -Oslo)

Expected accuracy of (p,2p)-Oslo method

Disadvantages: poor resolution & normalization

STRASSE+CATANA: large acceptance missing mass setup

STRASSE: Si tracker with Sub-mm vertex resolution CATANA: CsI(Na) array to detect protons and γ rays

- \checkmark Missing mass efficiency = 40% for (p,2p)
- \blacksquare Missing mass resolution = 1.7 MeV (σ)
- \mathbf{V} \mathbf{V} ray detection efficiency = 17% for 1 MeV
- Will be completed in Fall 2023

Prototype test at HIMAC (2022.05)

Blue: no gate, Red: L&R of CATANA

E dynode 10

Dynode QDC[ch]

E dynode 11

Future plan: (n,γ) of Cd isotopes

Proof of principle: ¹¹³In(p,2p)¹¹²Cd @ RIBF

¹¹¹Cd(n,γ)¹¹²Cd: 2 Direct + 1 standard Oslo data

3 days of beam time approved by RIKEN NP-PAC 2022 Construction of STRASSE and Liq. H2: ongoing (by Fall 2023) CATANA: ready Fall 2023 or Spring 2024

Summary

- (n,γ) reaction on n-rich nuclei: one of the major sources of r-process uncertainty
- New Indirect method: (p,2p)-Oslo method to obtain statistical n capture rate
 - Ex-Eq matrix from (p,2p) \rightarrow nuclear level density & q-ray strength function
 - High efficiency + high luminosity: more n-rich region than existing methods
 - ¹²⁹Cd(n,γ)¹³⁰Cd
 - Around ¹³²Sn: more n-rich region accessible than β -Oslo method
- STRASSE + CATANA setup
 - Prototype test @ HIMAC in 2022.05
 - Full CATANA + STRASSE prototype: Spring 2023 @ SAMURAI RIBF
 - Full STRASSE + Full CATANA: Fall 2023
- 3 days of beam time approved for ¹¹³In(p,2p)¹¹²Cd as proof-of-principle experiment.

Collaborators

T. Nakamura, Y. Kondo, N. Nakatsuka (Tokyo Institute of Technology)

- Y. Togano, H. Otsu, M. Sasano, T. Uesaka, H. Baba, T. Isobe, M. Kurata-Nishimura, J. Tanaka, H. Wang, K. Yoneda (RIKEN)
- S. Takeshige, K. Kurita (Rikkyo University)
- A. Obertelli, H. Liu, V. Alchndor, A. Frotscher, M. Ravar, T. Aumann, D. Rossi (T. U. Darmstadt)
- A. C. Larsen, S. Siem, E. Sahin, V. W. Ingeberg, M. Guttormsen (University of Oslo)
- T. Kobayashi (Tohoku University)

- F. Flavigny, A. Matta, N. Orr, J. Gibelin, F. Delaunay, M. Marques, N. L. Achouri (LPC CAEN)
 - K. I. Hahn, L. Stuhl, Z. Korkulu, D. Kim, S. Kim (IBS)

D. Nishimura, H. Takahashi (Tokyo City University)

J. Zenihiro (Kyoto University)