高エネルギー重イオン(I) LHC/RHIC/FAIRでの研究 「クォーク・グルーオンプラズ マ物性の精密研究」

郡司 卓(東京大学原子核科学研究センター)

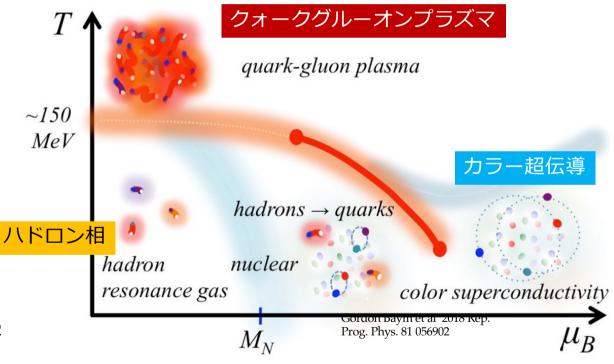
他 核物理の将来高エネルギー重イオンWG

Outline

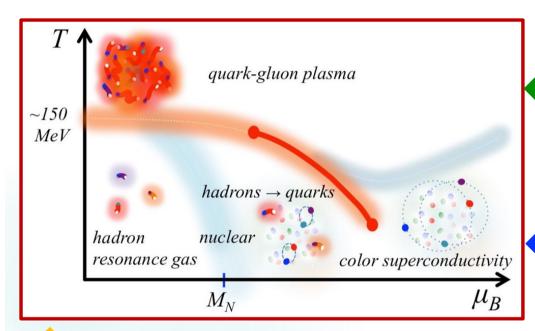
- ▶ 高エネルギー重イオンの目指す物理
- ▶ 分野の現状と日本グループの活動
- > 今後の展望
 - ▶ A. 進行中あるいは開始間近のプロジェクト
 - ▶ B. 提案したいプロジェクト(期間は設けないがおよそ10年程度まで)
 - ▶ C. 20~30年先を見据えた将来の構想や目標
- ▶ まとめ

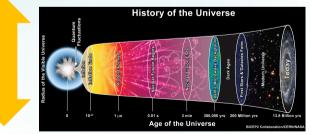
高エネルギー重イオン衝突の目指す物理

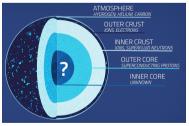
1. QCD物質の相構造の解明

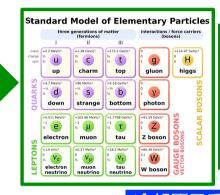

- クォークグルーオンプラズマと物性
- カラー超伝導相の探索とその物性
- 相境界の物質状態と物性
- 臨界点、閉じ込め・カイラル相転移

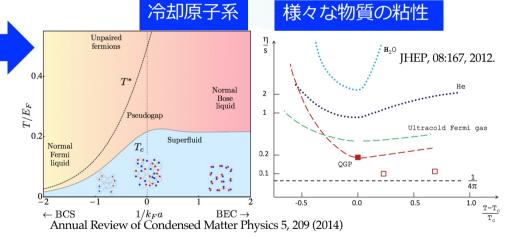
2. QCD真空構造の解明


- クォーク対凝縮の温度、密度、磁場 などによる変化の実験的検証
- アノマリ現象を通したトポロジカル 電荷揺らぎ存在の実証 (例:カイラ ル磁気効果)


3. 重イオン衝突の動力学


- 高強度グルーオン場からクォーク系 物質生成に至る非平衡QCDの動力学
- QCD流体力学
- QCD相転移(QGPからハドロン化)


高エネルギー重イオン衝突の目指す物理



初期宇宙シナリオの完成やコンパクト星の内部

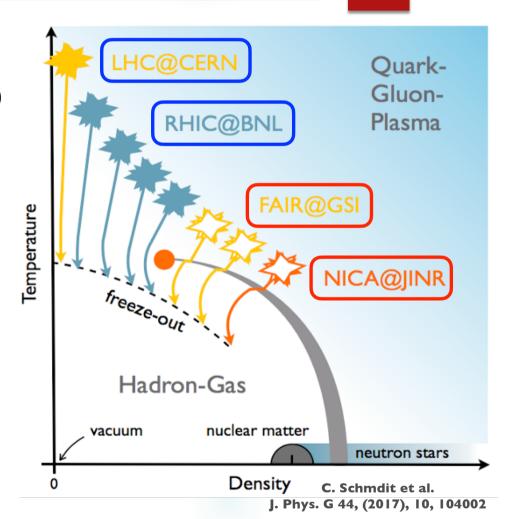
QCDの全容解明

- "素"から"多体系"へ
- ・ クォーク系物質の真 空から励起状態へ (相構造、相転移、物性)

素粒子物理学と物性物理学をつなぐ普遍的な 自然法則の探求

分野の現状: 高エネルギー重イオン加速器

・ 稼働中の加速器


- RHIC@BNL (>2000, $\sqrt{s_{NN}}$ =3 200 GeV)
- LHC@CERN (>2009, $\sqrt{s_{NN}}$ =2.76, 5.02 TeV)
- SPS@CERN(固定標的, √s_{NN} ~ 20 GeV)
- SIS18@GSI(固定標的, √s_{NN} ~ 2 GeV)

・ 建設中の加速器

- FAIR-SIS 100 (固定標的, √s_{NN} ~ 2-5 GeV)
- NICA (衝突型, √s_{NN} ~ 4-15 GeV)

• 計画段階

- FAIR-SIS300 ($\sqrt{s_{NN}} \sim 6-8-10 \text{ GeV}$)
- FCC@CERN ($\sqrt{s_{NN}} \sim 39 \text{ TeV}$)
- J-PARC-HI ($\sqrt{s_{NN}} \sim 2-5 \text{ GeV}$)
 - 将来計画案「J-PARCでの重イオン加速による高密度QCDの研究」

<u>分野の現状: 高エネルギー重イオン実験</u>

加速器	実験	エネルギー	核種		
LHC@CERN	ALICE	2.76, 5.02 TeV	Pb-Pb	L _{int} ~0.8nb ⁻¹	
	ATLAS	2.76, 5.02 TeV	Pb-Pb	L _{int} ~1.7nb ⁻¹	エネルギーフロンティア QGP物性
	CMS	2.76, 5.02 TeV	Pb-Pb	L _{int} ~1.7nb ⁻¹	Q01 WIT
	LHCb	2.76, 5.02 TeV	Pb-Pb	centrality>60%	
RHIC@BNL	STAR	3 (fixed target) – 200 GeV	pp, p-A, d-A, He-A, A-A	衝突エネルギー走査による路	
	PHENIX	7.7 – 200 GeV	pp, p-A, d-A, He-A, A-A	No data taking > 2016 L _{int} (narrow) ~ 8.4nb ⁻¹	QGP物性の系統性(核種・ エネルギー)
SPS@CERN	NA61/SHINE	5.1-17.3 GeV	pp, p-Pb, Pb-Pb, Be-Be, Xe-La, Ar+Sc,	hadron	臨界点探索 [´] 高密度フロンティア
SIS18@GSI	HADES	2.3-3.4 GeV	pp, Au+Au, C+C, Ar+KCl,	dielectron	

分野の現状: 日本グループの活動

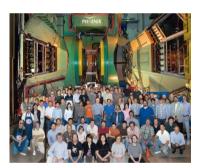
RHIC-PHENIX実験

>500人、75の研究機関

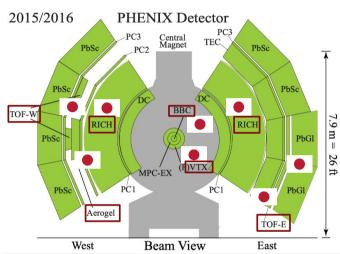
- 2000-2016. 現在はsPHENIX実験の準備中
- 現実験代表:秋葉康之(理研)
- 国内参加機関 (PHENIXの~20%)
 - 理研、筑波、東大、広島、奈良女、東工大
 - 長崎総合科学大学、KEK、京都、立教
- 日本グループの大きな貢献
 - EC委員(下村、江角、浜垣)
 - 解析WG議長(下村、江角、小沢、志垣、中條、浜垣)
 - 検出器(杉立、三明、浜垣、秋葉)
 - 地域解析センターCCJ@理研
- 総論文数(被引用数):228(~22000)
 - ・ 日本人研究者が関わる論文: ~100 (~45%)
- 日本人博士号:46人

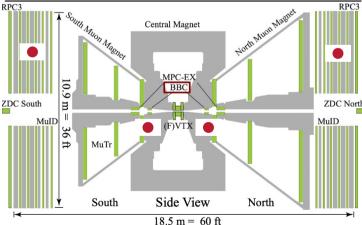
RHIC-STAR実験

738人、72の研究機関


- 2000~. 現在もデータ収集を続ける
- 筑波大学が参加

競争的資金が基盤


- ・ 日本グループの貢献を拡大中
 - 物理解析コーディネーター(新井田)
 - 解析WG議長(江角)
- 総論文数(被引用数):309 (~24000)
- 日本人博士号:4



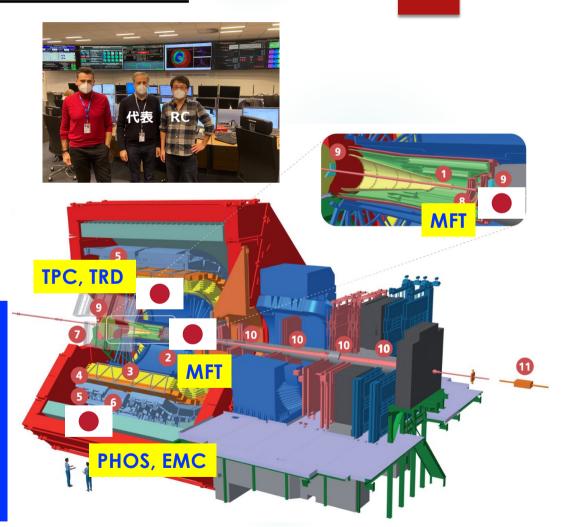
日米科学技術協力事 業による長期的なサポート

分野の現状: 日本グループの活躍

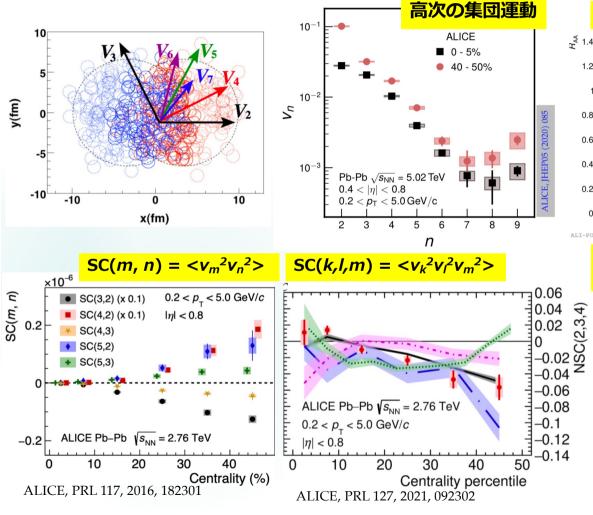
LHC-ALICE実験

2023人、173の研究機関

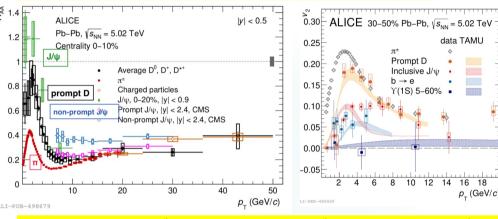
- 2009年実験開始、現在もデータ収集中
- 国内参加機関 (ALICEの~2%)
 - 筑波、東大、広島、奈良女、佐賀大、長崎総合科学大学
- ・ 日本グループの貢献、着実に中枢へ
 - CB副議長(大山、浜垣)
 - 実験全体運用責任者(郡司)
 - 解析WG議長(中條、坂井、郡司、関畑、Norbert)
 - 検出器やトリガー(杉立、中條、大山、志垣、郡司、山口)
 - Tier2解析センター@広島、筑波、長崎
- 総論文数(被引用数):415(~20000)
 - ・ 日本人研究者が関わる論文: ~25 (~6%)
- 日本人博士号:13

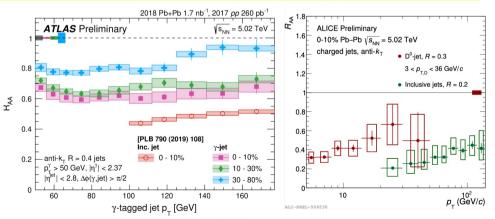


競争的資金が基盤(長期的基盤なし)

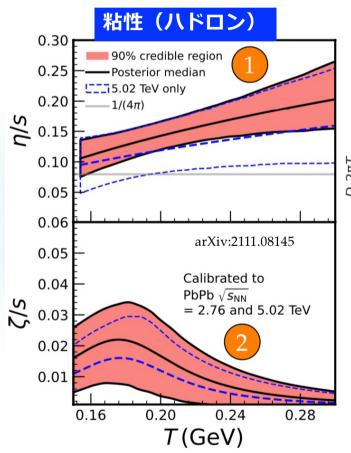

RHICからLHC

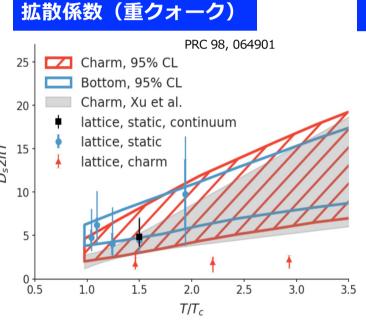
- 実験規模は4倍増
- 日本の規模は増えていない
- しかし、着実な貢献と中枢へ→日本グループの力と信頼

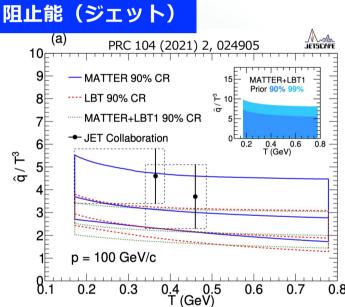

ALICEの先導には、国内基盤の増強と競争的資金ではない長期的なサポートが必須


最近の進展:多くの測定

チャームやボトムクォークのエネルギー損失と集団運動

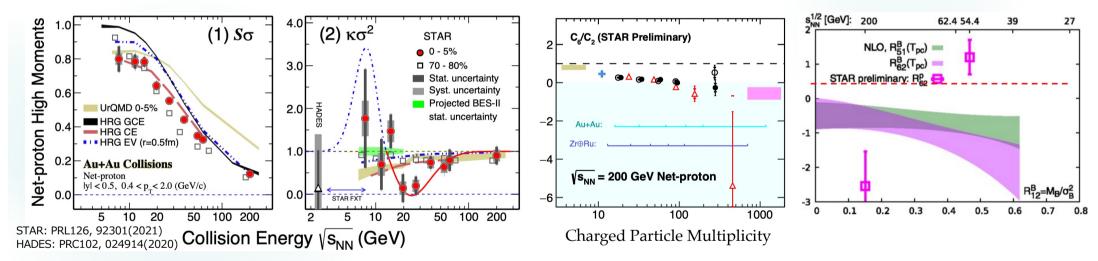



ジェットのエネルギー損失、クォーク、グルーオン、フレーバー 依存性



最近の進展: 物性の温度依存性

▶流体計算+ベイズ推定



最近の進展

- ▶ 統計の増加や衝突エネルギー走査
 - ▶保存量の高次揺らぎ → 相境界の様相の解明へ
 - ▶相転移近傍(臨界点、クロスオーバー、一次相転移)における相関長の振舞

臨界点の探索 BES-Iのデータ(STAR実験)

→ 発見に至らず

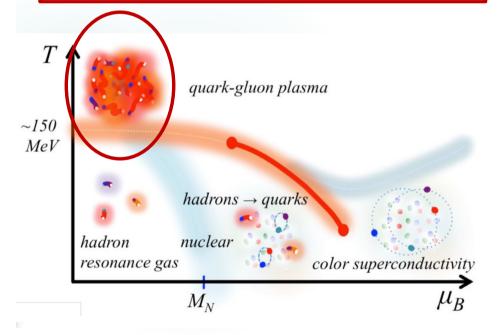
C₆/C₂<0@200 GeV → QGPの直接的な証拠

最近の進展

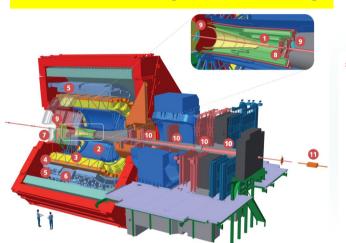
▶ エキゾチックハドロン、ハイパー核、femtoscopyを用い

たハドロン間相互作用 Femtoscopyによるハドロン間相互作用 X(3872)の収量増大 arXiv:2206.03344 arXiv:2201.05352 PhysRevLett.123.112002 $c_3(Q_3)$ ALICE p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV ALICE pp $\sqrt{s} = 13 \text{ TeV}$ 1.7 nb⁻¹ (PbPb 5.02 TeV) p-p-p genuine cumulant, flat feed-down High-mult. (0-0.17% INEL>0) p-Ξ ⊕ p-= p-p-p genuine cumulant, flat feed-down pD⁻ ⊕ p̄D⁻ **CMS** Coulomb + HAL-QCD 1.6 Prompt C. Fontoura et al ■ PbPb (5.02 TeV) Coulomb $\rho^{pp,PbPb} = N^{X(3872) \rightarrow J/\psi \pi \pi}$ 1.4 Y. Yamaquchi et al. |v| < 1.6, 0-90% p-E sideband background J. Haidenbauer et al. ($g^2/4\pi = 2.25$) ALICE pp $\sqrt{s} = 13 \text{ TeV}$ **pp** (7 TeV) High Mult. (0-0.17% INEL) |y| < 1.2 (CMS)**pp** (8 TeV) 100 200 100 200 300 k^* (MeV/c) 0.2 0.3 0.4 0.5 |y| < 0.75 (ATLAS) k^* (MeV/c) Q_{3} (GeV/c) Lifetime (ps) 30 400 $p_{_{ au}}$ (GeV/c) 高エネルギーハドロン衝突や 300 QGPを用いたハドロン物理研究 200 Science 328 (2010) 58 PLB 754 (2016) 360 100 PRC 97 (2018) 054909 NPB 16 (1970) 46 $D^0 - \overline{D^{*0}}$ "molecule" Diguark-diantiquark

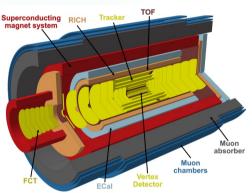
課題と今後の目標

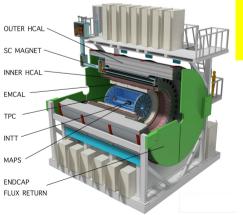

- ▶実験データの高精度化や新たなプローブの測定が課題
 - 重イオン衝突ダイナミクスの統一的理解
 - ▶初期状態 \rightarrow 熱化・流体化 \rightarrow QGP(QCD流体) \rightarrow 終状態(ハドロン化)
 - ▶小さい系~大きい系、GeV~TeV
 - ▶QGP物性の高精度化、QGP物性の温度依存性
 - ▶ 臨界点の探索、QCD相構造や相転移の解明、カラー超伝導の探索
 - ▶カイラル対称性の回復・破れ機構、閉じ込め機構(ハドロン化機構)
 - ▶ ハドロン間相互作用の高精度化(チャームや3体相関へ)

クォーク系物質の全容解明(新物質相、物性、相転移、相構造)へ QCDの基本的性質(閉じ込め、カイラル対称性、相互作用)の解明へ


目標を実現する実験計画

■ 重イオン衝突ダイナミクスの統一的理解


- ▶初期状態 → 熱化・流体化 → QGP(QCD流体) → 終状態(ハドロン化)
- ▶小さい系~大きい系、GeV~TeV
- > QGP物性の高精度化、QGP物性の温度依存性
- 臨界点の探索、OCD相構造や相転移の解明、カラー超伝導の探索
- ▶カイラル対称性の回復・破れ機構、閉じ込め機構(ハドロン化機構)
- ▶ ハドロン間相互作用の高精度化(チャームや3体相関へ)



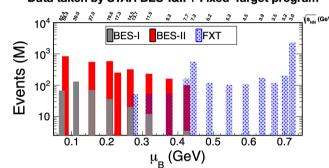
ALICE高度化 (2022-2032)

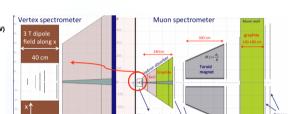
ALICE3 (2035-)

sPHENIX (2022-2025)

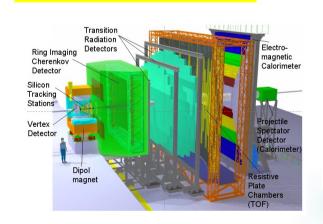
目標を実現する実験計画

■ 重イオン衝突ダイナミクスの統一的理解

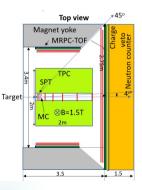

- ▶初期状態 → 熱化・流体化 → QGP(QCD流体) → 終状態(ハドロン化)
- ▶小さい系~大きい系、GeV~TeV
- > QGP物性の高精度化、QGP物性の温度依存性
- >臨界点の探索、OCD相構造や相転移の解明、カラー超伝導の探索
- ▶カイラル対称性の回復・破れ機構、閉じ込め機構(ハドロン化機構)
- 入ドロン間相互作用の高精度化(チャームや3体相関へ)

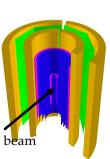

T quark-gluon plasma ~150 MeV hadron nuclear resonance gas color superconductivity M_N

STAR-BES-II (データ解析)


NA60+(2025-)

Data taken by STAR BES-I&II + Fixed-Target program



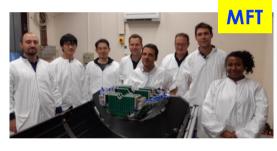


FAIR-CBM (2029-)

J-PARC-HI(2029?-)

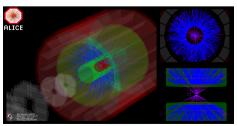
今後の展望:ALICE2実験

A. 進行中あるいは開始間近のプロジェクト

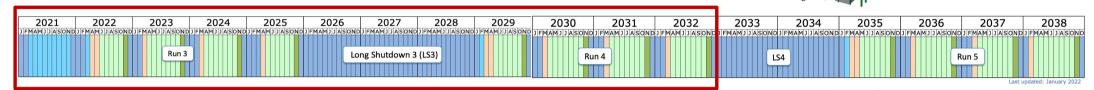


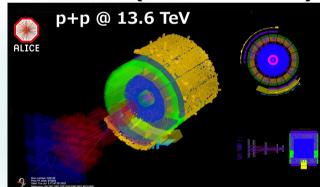
ALICE実験高度化「ALICE2」(2022-2032)

- TPC (東京大、長崎総科大), MFT(広島大)
- ITS, O²(GPUによる3 TB/sのオンライン処理)


・ 地上試験・実験エリアへの設置 (2019-2020)

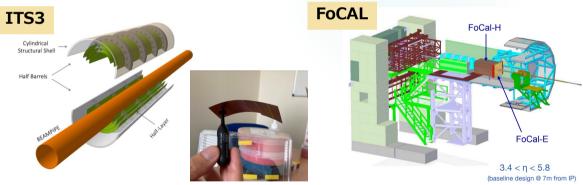
- ・ コミッショニングとビーム試験@900GeV(2021)
 - ・ 検出器やO2の動作を確認



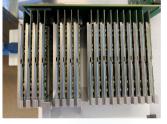

16

今後の展望:ALICE2実験

A. 進行中あるいは開始間近のプロジェクト



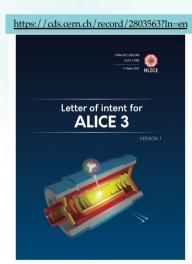
・ Run3の開始 (2022年7月5日)

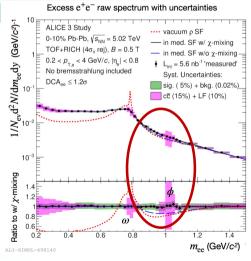


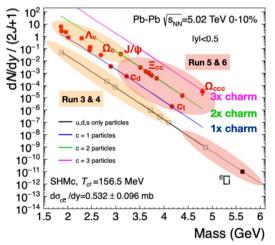
- Run3+Run4で、これまでの100倍のデータを収集予定、L_{int}~13nb⁻¹
 - ・ QGP物性の高精度化、ハドロン間相互作用、 カイラル対称性やハドロン化の物理
 - 初期状態(グルーオン飽和)、初期状態~QGP 生成機構の研究 → FoCAL(W+Si)

- LS3(2026-2028)に ITS3 & FoCAL
 - · FoCAL(筑波大、奈良女子大、長崎総科大、佐賀大)

今後の展望: ALICE3実験


- B. 提案したいプロジェクト(期間は設けないがおよそ10年程度まで)
- C. 20~30年先を見据えた将来の構想や目標


2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
J FMAM J J A SOND	J FMAM J J A SOND.	J FMAM J J A SOND.	J FMAM J J ASOND	JFMAMJJASON	J FMAM J J A SON	J FMAM J J A SOND	J FMAM J J A S ON D	J FMAM J J A SOND	J FMAM J J A S ON D	J FMAMJ J ASOND	J FMAM J J A SOND J	FMAMJJASOND	JFMAMJJASON	J FMAM J J ASONE	J FMAM J J ASONE	J FMAM J J A SOND	J FMAMJ J A SOND
		Run 3			Lo	ong Shutdown 3	(LS3)		Ru	ın 4		ت	S4			Run 5	
。 LUCでのCD物理のウフを日じす												Last	pdated: January 2022				


- ・ LHCでのQGP物理の完了を目指す
 - ・ QGP物性の温度依存性の精密化
 - ・ カイラル対称性の回復や破れの機構
 - 重クォークの熱化やハドロン化


ALICE3計画 (2035-)

- A novel detector with ultimate performance for HI physics
- Large acceptance in rapidity ($|\eta|$ <4) and p_T (>50 MeV)

<u>今後の展望: ALICE3実験 (2035-)</u>

- B. 提案したいプロジェクト(期間は設けないがおよそ10年程度まで)
- C. 20~30年先を見据えた将来の構想や目標

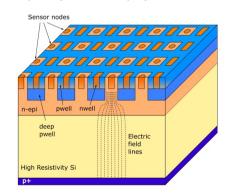
2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
J FMAM J J ASOND	J FMAM J J A SOND	J FMAM J J A SOND	J FMAMJ J ASOND	J FMAM J J ASOND	J FMAM J J A SOND	J FMAMJ J A SOND	J FMAMJ J A SOND	JFMAMJJASON	J FMAMJ J ASOND	J FMAM J J A SOND	J FMAM J J A SOND	J FMAMJ J ASOND					
		Run 3			llllll Lo	ng Shutdown 3	(LS3)		Ru	n 4			54		F F	tun 5	
																uns	
																Last	updated: January 2022

最先端のMAPSシリコンピクセル技術

Trackers

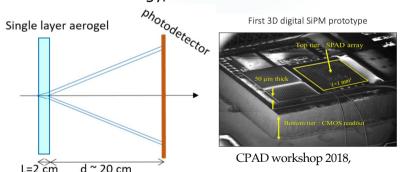
TOF

日本グループの参加を検討中


(→ 主導には長期的かつ安定した組織と予算措置が必要)

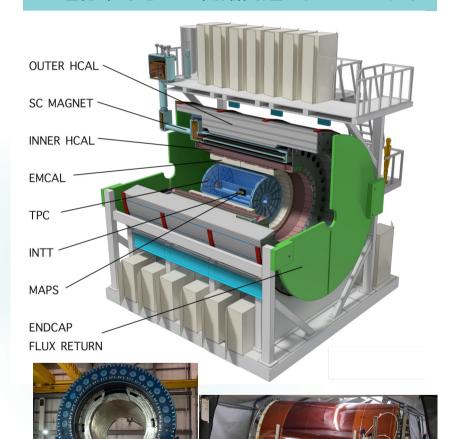
Wafers-sized, curved sensors (based on ITS3) 65nm technology

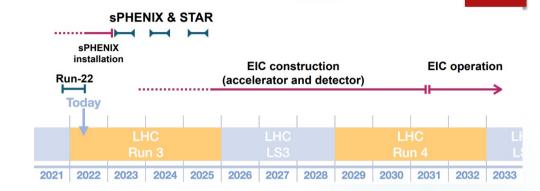
 $\sim 0.1\%$ X₀ / layer, $\sigma_{\text{pos}} \approx 2.5 \, \mu\text{m}$, $\sim 60 \, \text{m}^2$



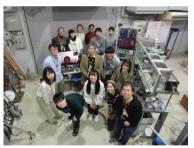
CMOS sensors with gain layer (σ_{TOF} <20ps), ~45m²

RICH


Digital SiPM based on CMOS Imaging technology, ~60m²

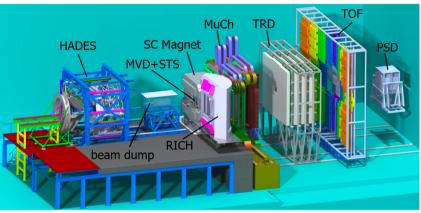


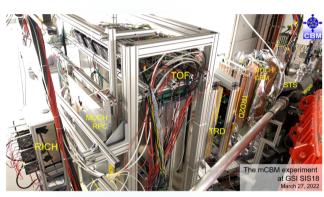
この技術を日本主導で開拓したい → 素粒子原子核実験や産業(医学、イメージング、自動運転) への応用

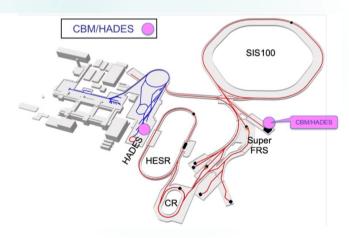

今後の展望:SPHENIX実験

A. 進行中あるいは開始間近のプロジェクト

- ・ 2022年に建設完了予定
 - ・ INTTシリコンストリップ (理研、奈良女子大)




- ・ 重イオン実験(2023-2025), L_{int}~20nb⁻¹
 - ・ QGP物性の高精度化(ジェット、重クォーク、ク オーコニウム)とRHICにおけるミッションの完了


今後の展望: CBM実験

B. 提案したいプロジェクト(期間は設けないがおよそ10年程度まで)

- ・ 臨界点の探索、高密度QCDの物性(状態方程式)、カイラル対称性 の物理(ho- a_1 カイラル混合)、ハイパー核
- 諸事情により大幅な遅れ。2028-2029年の開始を想定
- ・ mCBM実験 (2020-2022)
 - ・ 高レート化での検出器やDAQ(連続読出)の評価,
 - ・ ベンチマークラン (2022.3): ⁵⁶Fe + ⁵⁸Ni , T_{lab} = 1.8 AGeV
- ・ 筑波大学、KEKが準メンバーとして参加を開始
 - ・ ソフトウェア、STSへの貢献

日本グループの拡大を検討中

22

2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035		
	AL	ICE2			LS3		>	ALIC	E2.1		L	S4	AL	ICE3	
		Fo	CAL (7	'億)					AFT	ER					
	ALICE3	3(シリニ	コン、FF		id Tier: -夕処理				量産 (1	L0+20	億 = 30	<u>)億</u>)			
	STA	R & sPl	HENIX			eRHI	С					EIC			
INTT															
	F	AIR, CE	BM (cor	structi	on)			СВМ							
	STS,	MVD	高度化?,	PSD?	(3億)			+運営	<mark>費(渡航</mark>	<mark>費+実</mark>	<mark>験費) =</mark>	<u>5億円</u>	<mark>(5千万</mark>	/年)	
	NA6	0+(?)			NA60)+									
	J-	-PARC-	HI (cor	structi	on)					J-PA	RC-HI				
実験	と理論共	有のコン	ピューテ	ニィングし	ニンター ((核物理全	全体で広	く要求・	共有でき	きないか	?)	合	計50個	意	

海外での研究とJ-PARC-HIの両輪

海外での研究

国内施設での研究

QGPプローブ 最先端の実験技術海外研究グループ

ALICE2実験 sPHENIX実験 ALICE3計画 FAIR-CBM実験 (EIC実験)

日本の貢献の拡大

J-PARC-HIの広がり

J-PARC-HI

国内研究グループ ハドロン、ストレンジネス

高エネ

ルギー

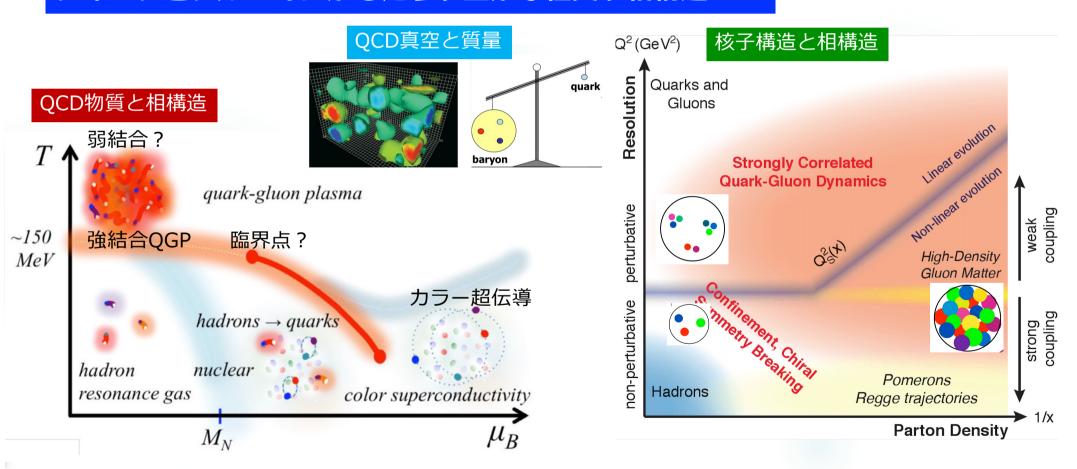
QCD

構想

海外での研究とJ-PARC-HIの両輪 + 国内研究組織基盤の拡充(高エネルギーQCD構想) → 両重イオン物理に対する日本の先導性の拡充。技術・人・知の国際循環

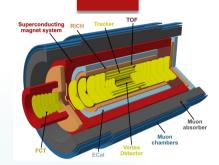
未来構想ビジョンに向けて 高エネルギーQCDフロンティア と国際連携

郡司 卓(東京大学原子核科学研究センター)


高エネルギー重イオンWG, 核子構造WG, 計算物理WG

高エネルギーQCDフロンティア

クォークとグルーオンがもたらす豊かな性質や相構造


26

クォーク・グルーオンが支配 する物理を中心に展開

高温QCD 物理

LHC+RHIC

QGP物性、閉じ込め&カイラル相転移、 QGP生成機構

QCD流体力学 QCD熱統計力学 非平衡QCD 高密度QCD

QCD有効理論

非線形OCD

QCD 理論

|論 高エネルギー

フロンティア

QCD

高密度

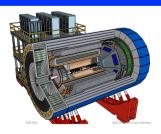
QCD物理

FAIR+J-PARC-HI

臨界点、カラー超伝導、閉じ込め&カイラル 相転移、物性

共通技術開発(検出器・データ処理・計算) 主に海外施設で研究を展開し、長期的に国際共同 研究を先導

海外研究の国内拠点:高エネルギーQCDセンター


格子QCD計算 QCD流体計算 有効理論計算 PDF計算

計算QCD

核子構造

EIC

パートン分布、グルーオン飽和、 核子の質量・スピン・大きさ

周辺分野との関連

中性子星内部 初期宇宙とQCD相転移 中性子星合体 高エネルギー宇宙線 宇宙物理 原子核から 大規模宇宙へ クォーク・グルーオン "素"から"多体系"へ 高エネルギー 素粒子 原子核 核物質物性 QCD OCD基礎理論 ゲージ重力対応 フロンティア ハドロンから 原子核へ クォーク・グルーオン ストレン からハドロンへ ハドロン ジネス ハイパー核 エキゾチックハドロン 閉じ込め、カイラル対称性 YN-YY相互作用

工学・産業

- 加速器技術(創薬、がん)
- 最先端検出器(シリコンピクセル、光検出器)
- ビッグデータサイエンス
 - ・ ハードウェア加速演算器による即時高速 処理 (ゲノム解析、金融解析)
 - ・ AI解析、ベイズ解析
- 次世代コンピューティング(メモリ主導型)
- ・優れた人材の輩出

物性物理 複雑系科学

- 強相関系物理(冷却原子、電子系)
- 相構造(冷却原子、超伝導体)
- 相転移・非平衡物理(光誘起相転移)
- 流体力学計算(輻射磁気流体、超新星爆発、 中性子星合体シミュレーション)
- 渦や回転、カイラル物質(ワイル半金属)
- ・ 強磁場と非線形QED (大強度レーザー)

まとめ

- ▶ QGP物理の着実な進展@RHIC & LHC
 - ▶ 様々なプローブによるQGP物性、高次揺らぎの測定、ハドロン物理
- ▶ 実験データの高精度化や新たなプローブの測定が課題
 - ▶ LHC: ALICE高度化、ALICE3計画
 - ▶ RHIC: sPHENIX実験、STAR-BES-IIデータ解析
 - ► SPS-NA60+, FAIR-CBM, J-PARC-HI
- ▶ 将来計画の主導。検出器R&D, 建設, 運用に責務
 - ▶ FoCAL、INTT、ALICE3のMAPSシリコンピクセル技術(→次世代の汎用実験技術)
 - ▶ 加速演算器によるオンラインデータ処理(→次世代の汎用実験技術)
 - ▶ 長期プロジェクト → 競争的資金では実現し難い「長期的かつ安定した組織と資金」が不可欠
- ▶ 実施機関

→高エネルギーQCDフロンティア

▶ 筑波大学、東京大学、理化学研究所、奈良女子大学、広島大学、佐賀大学、長崎総合科学大学